Activity log for bug #1663899

Date Who What changed Old value New value Message
2017-02-11 16:15:26 Seti bug added bug
2017-02-12 02:58:34 Seti description Hello all, can I turn on setCohesionNow, setCohesionOnNewContacts in triaxial test as well? if yes, why I set these parameters the porosity & friction does not change and I face with below error? while without these consideration code works. "Friction: 33.25 porosity: 1.0python: malloc.c:3720: _int_malloc: Assertion `(unsigned long) (size) >= (unsigned long) (nb)' failed. Aborted (core dumped)" the triaxial script is not different from the original one, I just copy it here if you need to know about the inputs. Thanks, Seti from yade import pack,plot ############################################ ### DEFINING VARIABLES AND MATERIALS ### ############################################ # The following 5 lines will be used later for batch execution nRead=readParamsFromTable( num_spheres=1000,# number of spheres compFricDegree =35, # contact friction during the confining phase key='_triax_base_', # put you simulation's name here unknownOk=True ) from yade.params import table num_spheres=table.num_spheres# number of spheres key=table.key targetPorosity = 0.42 #the porosity we want for the packing compFricDegree = table.compFricDegree # initial contact friction during the confining phase (will be decreased during the REFD compaction process) finalFricDegree = 35# contact friction during the deviatoric loading rate=-0.005 # loading rate (strain rate) damp=0.3 # damping coefficient stabilityThreshold=0.01 # we test unbalancedForce against this value in different loops (see below) young=100e6# contact stiffness mn,mx=Vector3(0,0,0),Vector3(0.09,0.18,0.09) # corners of the initial packing ## create materials for spheres and plates O.materials.append(CohFrictMat(alphaKr=0.5,young=young,poisson=0.09,frictionAngle=radians(33.5),normalCohesion=7.5e3,shearCohesion=2.25e3,momentRotationLaw=True,etaRoll=0.001,density=2600,isCohesive=True,label='spheres')) O.materials.append(CohFrictMat(young=young,poisson=0,frictionAngle=radians(0),density=0,label='walls')) ## create walls around the packing walls=aabbWalls([mn,mx],thickness=0,material='walls') wallIds=O.bodies.append(walls) ## use a SpherePack object to generate a random loose particles packing sp=pack.SpherePack() clumps=False #turn this true for the same example with clumps if clumps: ## approximate mean rad of the futur dense packing for latter use volume = (mx[0]-mn[0])*(mx[1]-mn[1])*(mx[2]-mn[2]) mean_rad = pow(0.09*volume/num_spheres,0.3333) ## define a unique clump type (we could have many, see clumpCloud documentation) c1=pack.SpherePack([((-0.2*mean_rad,0,0),0.5*mean_rad),((0.2*mean_rad,0,0),0.5*mean_rad)]) ## generate positions and input them in the simulation sp.makeClumpCloud(mn,mx,[c1],periodic=False) sp.toSimulation(material='spheres') O.bodies.updateClumpProperties()#get more accurate clump masses/volumes/inertia else: sp.makeCloud(mn,mx,-1,0,num_spheres,False, 0.95,seed=1) #"seed" make the "random" generation always the same #sp.makeCloud(mn,mx,0.066,num_spheres) #"seed" make the "random" generation always the same O.bodies.append([sphere(center,rad,material='spheres') for center,rad in sp]) #or alternatively (higher level function doing exactly the same): #sp.toSimulation(material='spheres') ############################ ### DEFINING ENGINES ### ############################ triax=TriaxialStressController( ## TriaxialStressController will be used to control stress and strain. It controls particles size and plates positions. ## this control of boundary conditions was used for instance in http://dx.doi.org/10.1016/j.ijengsci.2008.07.002 maxMultiplier=1.+2e4/young, # spheres growing factor (fast growth) finalMaxMultiplier=1.+2e3/young, # spheres growing factor (slow growth) thickness = 0, ## switch stress/strain control using a bitmask. What is a bitmask, huh?! ## Say x=1 if stess is controlled on x, else x=0. Same for for y and z, which are 1 or 0. ## Then an integer uniquely defining the combination of all these tests is: mask = x*1 + y*2 + z*4 ## to put it differently, the mask is the integer whose binary representation is xyz, i.e. ## "100" (1) means "x", "110" (3) means "x and y", "111" (7) means "x and y and z", etc. stressMask = 7, internalCompaction=True, # If true the confining pressure is generated by growing particles ) newton=NewtonIntegrator(damping=damp) ######################################## #Modified engine ################################## O.engines=[ ForceResetter(), InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]), InteractionLoop( [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys (),Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(setCohesionNow = True, setCohesionOnNewContacts = True,label="cohesiveIp")], [Law2_ScGeom_FrictPhys_CundallStrack(),Law2_ScGeom_CohFrictPhys_CohesionMoment( useIncrementalForm=True, #useIncrementalForm is turned on as we want plasticity on the contact moments always_use_moment_law=False, #if we want "rolling" friction even if the contact is not cohesive (or cohesion is broken), we will have to turn this true somewhere label='cohesiveLaw')] ), ## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf) GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8), triax, TriaxialStateRecorder(iterPeriod=100,file='150,damp0.8,rate 0.005,NEW50,alphaKr=0.5,young=100e6,poisson=0.09,frictionAngle=radians(50),normalCohesion=7.5e10,shearCohesion=2.25e10,etaRoll=0.025,density=2600,wall35,'+key), newton ] ########################################################## #O.engines=[ #ForceResetter(), #InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]), #InteractionLoop( #[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], #[Ip2_FrictMat_FrictMat_FrictPhys()], #[Law2_ScGeom_FrictPhys_CundallStrack()] #), ## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf) #GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8), #triax, #TriaxialStateRecorder(iterPeriod=100,file='WallStresses'+table.key), #newton #] ############################# #Display spheres with 2 colors for seeing rotations better Gl1_Sphere.stripes=0 if nRead==0: yade.qt.Controller(), yade.qt.View() ## UNCOMMENT THE FOLLOWING SECTIONS ONE BY ONE ## DEPENDING ON YOUR EDITOR, IT COULD BE DONE ## BY SELECTING THE CODE BLOCKS BETWEEN THE SUBTITLES ## AND PRESSING CTRL+SHIFT+D #if nRead==0: yade.qt.Controller(), yade.qt.View() print 'Number of elements: ', len(O.bodies) print 'Box Volume: ', triax.boxVolume ####################################### ### APPLYING CONFINING PRESSURE ### ####################################### #the value of (isotropic) confining stress defines the target stress to be applied in all three directions triax.goal1=triax.goal2=triax.goal3=-150000 #while 1: #O.run(1000, True) ##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium #unb=unbalancedForce() #print 'unbalanced force:',unb,' mean stress: ',triax.meanStress #if unb<stabilityThreshold and abs(-10000-triax.meanStress)/10000<0.001: #break #O.save('confinedState'+key+'.yade.gz') #print "### Isotropic state saved ###" ################################################### ### REACHING A SPECIFIED POROSITY PRECISELY ### ################################################### ### We will reach a prescribed value of porosity with the REFD algorithm ### (see http://dx.doi.org/10.2516/ogst/2012032 and ### http://www.geosyntheticssociety.org/Resources/Archive/GI/src/V9I2/GI-V9-N2-Paper1.pdf) import sys #this is only for the flush() below while triax.porosity>targetPorosity: ## we decrease friction value and apply it to all the bodies and contacts compFricDegree = 0.95*compFricDegree setContactFriction(radians(compFricDegree)) print "\r Friction: ",compFricDegree," porosity:",triax.porosity, sys.stdout.flush() ## while we run steps, triax will tend to grow particles as the packing ## keeps shrinking as a consequence of decreasing friction. Consequently ## porosity will decrease O.run(500,1) O.save('compactedStateBEL20,young=63.9e8'+key+'.yade.gz') print "### Compacted state saved ###" ############################## ### DEVIATORIC LOADING ### ############################## ##We move to deviatoric loading, let us turn internal compaction off to keep particles sizes constant triax.internalCompaction=False ## Change contact friction (remember that decreasing it would generate instantaneous instabilities) setContactFriction(radians(finalFricDegree)) ##set stress control on x and z, we will impose strain rate on y triax.stressMask = 5 ##now goal2 is the target strain rate triax.goal2=rate ## we define the lateral stresses during the test, here the same 10kPa as for the initial confinement. triax.goal1=-150000 triax.goal3=-150000 ##we can change damping here. What is the effect in your opinion? newton.damping=0.1 Hello all, can I turn on setCohesionNow, setCohesionOnNewContacts in triaxial test as well? if yes, why I set these parameters the porosity & friction does not change and I face with below error? while without these consideration code works.  "Friction: 33.25 porosity: 1.0python: malloc.c:3720: _int_malloc: Assertion `(unsigned long) (size) >= (unsigned long) (nb)' failed. Aborted (core dumped)" the triaxial script is not different from the original one, I just copy it here if you need to know about the inputs. Thanks, Seti from yade import pack,plot ############################################ ### DEFINING VARIABLES AND MATERIALS ### ############################################ # The following 5 lines will be used later for batch execution nRead=readParamsFromTable(  num_spheres=1000,# number of spheres  compFricDegree =35, # contact friction during the confining phase  key='_triax_base_', # put you simulation's name here  unknownOk=True ) from yade.params import table num_spheres=table.num_spheres# number of spheres key=table.key targetPorosity = 0.42 #the porosity we want for the packing compFricDegree = table.compFricDegree # initial contact friction during the confining phase (will be decreased during the REFD compaction process) finalFricDegree = 35# contact friction during the deviatoric loading rate=-0.005 # loading rate (strain rate) damp=0.3 # damping coefficient stabilityThreshold=0.01 # we test unbalancedForce against this value in different loops (see below) young=100e6# contact stiffness mn,mx=Vector3(0,0,0),Vector3(0.09,0.18,0.09) # corners of the initial packing ## create materials for spheres and plates O.materials.append(CohFrictMat(alphaKr=0.5,young=young,poisson=0.09,frictionAngle=radians(33.5),normalCohesion=7.5e3,shearCohesion=2.25e3,momentRotationLaw=True,etaRoll=0.001,density=2600,isCohesive=True,label='spheres')) O.materials.append(CohFrictMat(young=young,poisson=0,frictionAngle=radians(0),density=0,label='walls')) ## create walls around the packing walls=aabbWalls([mn,mx],thickness=0,material='walls') wallIds=O.bodies.append(walls) ## use a SpherePack object to generate a random loose particles packing sp=pack.SpherePack() clumps=False #turn this true for the same example with clumps if clumps:  ## approximate mean rad of the futur dense packing for latter use  volume = (mx[0]-mn[0])*(mx[1]-mn[1])*(mx[2]-mn[2])  mean_rad = pow(0.09*volume/num_spheres,0.3333)  ## define a unique clump type (we could have many, see clumpCloud documentation)  c1=pack.SpherePack([((-0.2*mean_rad,0,0),0.5*mean_rad),((0.2*mean_rad,0,0),0.5*mean_rad)])  ## generate positions and input them in the simulation  sp.makeClumpCloud(mn,mx,[c1],periodic=False)  sp.toSimulation(material='spheres')  O.bodies.updateClumpProperties()#get more accurate clump masses/volumes/inertia else:  sp.makeCloud(mn,mx,-1,0,num_spheres,False, 0.95,seed=1) #"seed" make the "random" generation always the same  #sp.makeCloud(mn,mx,0.066,num_spheres) #"seed" make the "random" generation always the same  O.bodies.append([sphere(center,rad,material='spheres') for center,rad in sp])  #or alternatively (higher level function doing exactly the same):  #sp.toSimulation(material='spheres') ############################ ### DEFINING ENGINES ### ############################ triax=TriaxialStressController(  ## TriaxialStressController will be used to control stress and strain. It controls particles size and plates positions.  ## this control of boundary conditions was used for instance in http://dx.doi.org/10.1016/j.ijengsci.2008.07.002  maxMultiplier=1.+2e4/young, # spheres growing factor (fast growth)  finalMaxMultiplier=1.+2e3/young, # spheres growing factor (slow growth)  thickness = 0,  ## switch stress/strain control using a bitmask. What is a bitmask, huh?!  ## Say x=1 if stess is controlled on x, else x=0. Same for for y and z, which are 1 or 0.  ## Then an integer uniquely defining the combination of all these tests is: mask = x*1 + y*2 + z*4  ## to put it differently, the mask is the integer whose binary representation is xyz, i.e.  ## "100" (1) means "x", "110" (3) means "x and y", "111" (7) means "x and y and z", etc.  stressMask = 7,  internalCompaction=True, # If true the confining pressure is generated by growing particles ) newton=NewtonIntegrator(damping=damp) ######################################## #Modified engine ################################## O.engines=[         ForceResetter(),         InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),         InteractionLoop(                 [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],                 [Ip2_FrictMat_FrictMat_FrictPhys (),Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(setCohesionNow = True, setCohesionOnNewContacts = True,label="cohesiveIp")],                 [Law2_ScGeom_FrictPhys_CundallStrack(),Law2_ScGeom_CohFrictPhys_CohesionMoment(    useIncrementalForm=True, #useIncrementalForm is turned on as we want plasticity on the contact moments    always_use_moment_law=False, #if we want "rolling" friction even if the contact is not cohesive (or cohesion is broken), we will have to turn this true somewhere    label='cohesiveLaw')]         ),         ## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf)         GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8),         triax,         TriaxialStateRecorder(iterPeriod=100,file='150,damp0.8,rate 0.005,NEW50,alphaKr=0.5,young=100e6,poisson=0.09,frictionAngle=radians(50),normalCohesion=7.5e10,shearCohesion=2.25e10,etaRoll=0.025,density=2600,wall35,'+key),         newton ] ########################################################## #O.engines=[  #ForceResetter(),  #InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),  #InteractionLoop(   #[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],   #[Ip2_FrictMat_FrictMat_FrictPhys()],   #[Law2_ScGeom_FrictPhys_CundallStrack()]  #),  ## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf)  #GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8),  #triax,  #TriaxialStateRecorder(iterPeriod=100,file='WallStresses'+table.key),  #newton #] ############################# #Display spheres with 2 colors for seeing rotations better Gl1_Sphere.stripes=0 if nRead==0: yade.qt.Controller(), yade.qt.View() ## UNCOMMENT THE FOLLOWING SECTIONS ONE BY ONE ## DEPENDING ON YOUR EDITOR, IT COULD BE DONE ## BY SELECTING THE CODE BLOCKS BETWEEN THE SUBTITLES ## AND PRESSING CTRL+SHIFT+D #if nRead==0: yade.qt.Controller(), yade.qt.View() print 'Number of elements: ', len(O.bodies) print 'Box Volume: ', triax.boxVolume ####################################### ### APPLYING CONFINING PRESSURE ### ####################################### #the value of (isotropic) confining stress defines the target stress to be applied in all three directions triax.goal1=triax.goal2=triax.goal3=-150000 #while 1:   #O.run(1000, True)   ##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium   #unb=unbalancedForce()   #print 'unbalanced force:',unb,' mean stress: ',triax.meanStress   #if unb<stabilityThreshold and abs(-10000-triax.meanStress)/10000<0.001:     #break #O.save('confinedState'+key+'.yade.gz') #print "### Isotropic state saved ###" ################################################### ### REACHING A SPECIFIED POROSITY PRECISELY ### ################################################### ### We will reach a prescribed value of porosity with the REFD algorithm ### (see http://dx.doi.org/10.2516/ogst/2012032 and ### http://www.geosyntheticssociety.org/Resources/Archive/GI/src/V9I2/GI-V9-N2-Paper1.pdf) import sys #this is only for the flush() below while triax.porosity>targetPorosity:  ## we decrease friction value and apply it to all the bodies and contacts  compFricDegree = 0.95*compFricDegree  setContactFriction(radians(compFricDegree))  print "\r Friction: ",compFricDegree," porosity:",triax.porosity,  sys.stdout.flush()  ## while we run steps, triax will tend to grow particles as the packing  ## keeps shrinking as a consequence of decreasing friction. Consequently  ## porosity will decrease  O.run(500,1) O.save('compactedStateBEL20,young=63.9e8'+key+'.yade.gz') print "### Compacted state saved ###" ############################## ### DEVIATORIC LOADING ### ############################## ##We move to deviatoric loading, let us turn internal compaction off to keep particles sizes constant triax.internalCompaction=False ## Change contact friction (remember that decreasing it would generate instantaneous instabilities) setContactFriction(radians(finalFricDegree)) ##set stress control on x and z, we will impose strain rate on y triax.stressMask = 5 ##now goal2 is the target strain rate triax.goal2=rate ## we define the lateral stresses during the test, here the same 10kPa as for the initial confinement. triax.goal1=-150000 triax.goal3=-150000 ##we can change damping here. What is the effect in your opinion? newton.damping=0.1
2017-02-12 07:45:53 Seti summary etCohesionNow & setCohesionOnNewContacts /triaxial test SetCohesionNow & setCohesionOnNewContacts /triaxial test