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1. Mathematical notation 

 

To be specific with transition between two states of something (using probability) we use matrixes and 

vectors. Vectors contains probability state and the matrixes are state-transition matrixes. How it 

works? 

)()1( npMnp

  

Where: )(np


- vector of probability within n-step, M - state-transition matrix. 

 

1.1.  Conditions for vector 

The vectors are normalized. That means: 

1p


 

But the norm is calculate in different way than in Euclidean space: 
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Where 1p , 2p ,…, kp are probabilities of being in state 1, 2, … or k. 

And because the numbers 1p , 2p ,…, kp are positive valued between 0 and 1 (including them), it is 

quite simpler condition: 
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Examples 

 

a) We are working in a company and the boss told us to do something. We have two states: 1- 

undone, 2- done. But after some time we didn’t finished the work, so our probability state is: 
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And when the boss will come, he sees undone work. 

But after one hour we will finish the work. Then our state will be: 
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b) We are learning for an exam. This is hard and our probability to pass is about 75%=0.75. We 

also have two states during the (future) exam: 1- failed, 2- passed. So our probability vector of 

passing exam is: 
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1.2. Our case using the vector 

Those vectors can describe one particle (for example in quantum mechanics) but also can represent 

whole physical system (like the gas in a bottle). In this work we will use them to describe growing 

trees. Our system contains 4 state of living tree: sampling, pole, mature, old. Also it contains 1 state of 

dead tree. So the vector is 5-dimensional: 
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Where 1p - sampling, 2p - pole, 3p -mature, 4p -old, 5p -dead tree. 

 

1.3. State-transition matrix 

The matrix is used for transition between one and another step of mathematical calculations (also 

between two step of any simulation). It is describing all the possible transitions as a numbers 

(representing the possibility of transition between states). 

It is important to create proper matrix. First condition is that every column of state-transition matrix 

has to add into 1: 
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Examples 

 

a) The coin has two sides: front and back side. When we spin the coin from front side it can 

change or stay on its side with the same probability of ½. The same situation is with the back 

side. The transition matrix between first and second state is: 
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And the vector is describing: 
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b) We can see an apple hanging on the tree. Every day it has ½ chance to fall. The fallen apple 

can’t hang again, so the matrix has form: 
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1.4. Our case using the matrix 

As it was said before, we have 5 different states of the tree. Also, what we should notice, we can’t go 

from the state 1 into 3, apart from the state 2 (there are more conditions similar to this one). 

So the state-transition matrix has form: 
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We should remember the condition for this matrix (sum of each column equals 1). Also we can be 

interested in changing states: growing or dying trees. That change the matrix a bit: 
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Now we can see that we need only 7 number to have complete behavior of one type of tree on one type 

of ground. Also we can handle with even more simple model- 2 numbers: 
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But it depends only on what we want to simulate. More complex model has 7 numbers, and it will not 

be so hard to implement. At last changing the model (between simple and complex) won’t be hard . 

 

2. Advanced calculation of math model 

If we want to describe the state after one step we use the equation, as above: 

)()1( npMnp

  

Using the same equation, but with added numbers: 

)1()2(  npMnp


 

We can receive: 

)()()1()2( 2 npMnpMMnpMnp

  

)()2( 2 npMnp

  

The general formula is: 

)0()( pMkp k 
  

If we want to describe k-step, just multiply the matrix k-times and then multiply the vector by the 

result matrix. Easy? What about the number k, which is not a integer, but real number? 

To get the result, we can go through 2 major ways: 

 mathematically precise 

 simple and approximate 

The result is the same, so the approximation is finding the exact function. 

 

I will show the simple way. To do that, I will take well known example (from physic or chemistry 

lessons): half-decay of isotopes. 
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2.1. The law of half-decay 

After time of Δt we will have ½ of atoms of one isotope. The time can be from 10
-9

 s to thousands of 

years. So we can take almost any time and find an isotope which is very similar to our example. Let 

take the time of 7 days. Iodine-131 (iodium) has the time of 8 days. Almost the same . 

 

2.2. Process of decay 

We can take for example 1000 atoms of our strange-iodine. After 7 days we will measure only 500 of 

atoms (the rest will transform into another type of atoms, which we can’t see in our experiment). After 

another days we will see only 500·½=250 atoms. Then we will see 125, 63, 32, 16, 8 and so on. We 

can picture the result as a graph: 

 

Week Atoms 

0 1000 

1 500 

2 250 

3 125 

4 63 

5 32 

6 16 

7 8 

 

 

 

 

We can see that the number of atoms decreases with time. At first the amount of atoms decreases very 

fast, then it slows down. 

What we can do to describe the numbers better? We can fit a function to the graph. Which? Let take 

exponent: )exp()( xAxf    

 
 

We can see that in this experiment the fit is not exact (x=0, then f(x)=994.75≠1000). But really it fits. 

More atoms at first would change the parameters (because there will not be any approximations). 
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2.3. Equations for first two points 

We can try to solve the equations for first two points. Two unknowns and two equations should give 

exact solution: 
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We know that, 1)0exp()0exp(  , so: 

)exp(500

11000





A

A
 

So the solution for A (first equation): 
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Second equation is not so simple: 
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Where ln(x) means the natural logarithm (logarithm with the base of e=2.718…)
1
. 

 

Let calculate the third point from our experiment using the numbers: 

25025.010001.386...)- exp(1000)2...693.0exp(1000)2( f  

Great! That was our result. 

 

2.4.  Interpolation 

So if we want to calculate the number of atoms in our experiment at any time, we should just put into 

the equation correct number of weeks and recalculate. It can be even half of week. Half of second too. 

Any period of time we want. 

The only problem is to recalculate time: from seconds into weeks. 

1 week = 7·24·60·60=604800 seconds 

That means: 

1 second = 1/604800 weeks ≈  0.00000165344 weeks 

Very short time. 

 

2.5.  Extrapolation 

The numbers are plain. They means nothing to us. We should interpret them at first. 

If we add some atoms at the beginning of the experiment, the equation will change. First equation 

( ...)0( f ) will be different. And the result will change only the A number. This number means how 

many particles we have at the beginning of the experiment. The second value: α is constant for half-

decay law. 

Our case of trees is a bit different. Trees can behave exactly the same like atoms in decay, but the 

description can be different for us. We aren’t thinking about number of trees, but about the probability 

of “living tree” (instead of “dead tree”). That changes the number A into 1. Second thing is that we 

want to say that 90% of trees will last for 50 minutes (=3000 seconds). What makes the equation for α: 

                                                      
1
 http://en.wikipedia.org/wiki/Natural_logarithm 

http://en.wikipedia.org/wiki/Natural_logarithm
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Any conditions can be met by the equations here. 

 

3. First look into my model of growing trees. 

At first I assumed that we can calculate every “n” seconds (or milliseconds) calculate behaviour of the 

tree. Second assumption is that have precise numbers describing the possibility of changing the state 

of the tree. How can we get the numbers? That will be next part of this work. 

Also my model contains three variables describing any land: 

 Temperature 

 Humidity 

 Fertility 

We can set the numbers as degrees (Celsius, Kelvin, Fahrenheit, …), percent (of water) and percent 

(of nutrients) (that is the natural representation) or another representation: only real values between 0 

and 1. 1 is very hot, 0- very cold. 1- full of water (see, lake), 0- no water at all (lava). The same with 

fertility. The second model is better for implementation and simulation, but it isn’t so good for human 

thinking . Some people will not understand the numbers. 

I will use only the second model, but I will translate natural units into the model. 

 

4. Math model of probability (our case) 

To describe what happened with a tree we can use probability. 

 

4.1.  Example of calculations (growing): 

We have 100 samplings of larch. We want them to grow fast in best conditions. Let it be in 50 

seconds, 90 of them (90%) will be grown up into poles (or higher), what means that only 10 of them 

will stay as samplings. Also our simulation will have steps every 2 seconds. 

So the number of growing up every step of simulation will be (as in point 2.5): 

)exp()( nAnf    
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So after one step we have that amount of samplings: 

2.91912011.0100)10921.0exp(100)1( f  

From the other side we can say those numbers as possibilities and number of trees: 

0N - number of samplings at the beginning, )(nN - number of samplings in n-step, stayp - possibility 

of staying (not growing up), n - number of steps. 
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Comparing those equations: 
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We can say, that in our case: 
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There is a condition for stayp  (but we assume that the tree can’t die now): 
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4.2. Conclusion 

That calculations were only for one type of trees and one soil. We have assumptions: time, number (or 

percent) of grown trees, soil, and the result is a possibility of growing up a tree in a constant period of 

time. 

This is very important: the growp  value is constant for one type of trees and one type of soil. 

 

And something to code of any simulation: 

For every step we can generate a random real number (0 … 1) and then compare it with the growp  

value. Here is a sample of C function (probably C++ is very similar): 

 
int growQ(double possibility){ 

 double randomNumber=drand48()2; 

 if(randomNumber>possibility) return 0; //False- stay at  

the current size 

 return 1; //True- the tree should grow 

 } 

 

Second point here is that the same algorithm is for death of trees, but another numbers are in input. 

 

4.3.  Math model for death of trees 

Here I should say that the model for death of trees should be exactly the same as model for growing 

trees. So we should calculate the probability of death ( deathp ) in the same way (on exact type of land). 

And then we should make similar function for death of trees: 

 
int deathQ(double possibility){ 

 double randomNumber=drand48(); 

 if(randomNumber>possibility) return 0; //False- stay  

alive 

 return 1; //True- the tree should die 

 } 

 

 

 

                                                      
2
 Manual for the drand48 function is here: http://pubs.opengroup.org/onlinepubs/7908799/xsh/drand48.html. 

We can use any other pseudo-random generator for numbers in range (0 … 1). 

http://pubs.opengroup.org/onlinepubs/7908799/xsh/drand48.html
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4.4. Compiling together functions 

There are two ways to compile those functions together. First one contains generating random number 

two times. This diagram shows the algorithm of the process: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This way of compiling functions together gives something different to the math model described at the 

beginning. Here we have two state-transform matrixes: one containing only death of trees and second- 

only growing up. It works slightly different to first math model. 

 

Second way is a bit more complicated, but it contains only one number generation. Also it is exact to 

the math model of state-transform matrixes and state vectors. 

At first we calculate probability for death and grow of trees. Then we have to sum them. Why? The 

sum of possibility of both processes can’t be greater than 1. If it is we have to normalize it to one: 

END 

calculate 

probability 

(die) 

Y Y N N 

calculate 

probability 

(grow) 

generate 

number 0…1 

generate 

number 0…1 

is the number 

smaller? 

is the number 

smaller? 

START 

change the tree 

into dead tree 

change the tree 

into bigger tree 

Those parts are done by 

functions given above 
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Then we should generate a random number. Last thing is to conclude, what should be done: 

 0 … deathp : the tree is dying 

 deathp  … growdeath pp  : the tree is growing 

 growdeath pp   … 1: the tree stays at the state 

 

The function containing all the things algorithm can be written as: 

 
void treeStep(double possibilityDeath, double possibilityGrow){ 

 double pDeath=possibilityDeath; 

 double pGrow=possibilityGrow; 

if(pDeath+pGrow>1){ 

 //Normalization of possibilities 

 pDeath= possibilityDeath/(possibilityDeath+ possibilityGrow); 

 pGrow= possibilityGrow /(possibilityDeath+ possibilityGrow); 

  } 

 double radomNumber=drand48(); 

 //Here is the conclusion 

 if(randomNumber<pDeath){ 

  //THE TREE IS DYING → tree.die()? 

} 

  else{ 

   if(randomNumber<pDeath+pGrow){ 

    //THE TREE IS GROWING → tree.grow()? 

    } 

   else{ 

    //DO NOTHING → ? 

    } 

} 

  }//END of function 

 

Which process should be chosen to write in? Really don’t know. Maybe there is something there in the 

code of Widelands? Or one of those is too complicated in any way? 

 

5. Four models for possibility values 

I’ve described how to calculate possibility for one type of soil and one type of tree. But we have more 

trees and more soils, which can be used. How to calculate all those possibilities? I’ve made up 4 basic 

models. 

Let take the larch again as a tree. Its best conditions for living is rather cold temperature (0.3), and not 

so wet ground (0.35), and middle fertility of ground (0.5). Every differences change the possibility of 

growing up or not dying into smaller numbers: 
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5.1. Symmetric triangle model (simplest model) 

We assume that the change of temperature on both sides (into colder or hotter temperatures) causes the 

same changes of possibilities: 
 

0.2 0.4 0.6 0.8 1.0
temperature

0.2

0.4

0.6

0.8

1.0

possibility

 
We describe all the possibilities for each feature of soil and at last we multiply the results. That gives 

us the main result. But we should also multiply the result by the probability of growth or live
3
. Then 

we have exact numbers for possibilities for each land. 

This model needs  two parameters for each feature of soil: highest point and width of the triangle. Also 

it needs a possibility for best parameters. 

Maximum complex way contains: different best parameters for living and growing the tree and 

different widths for each feature of soil. Then different possibilities of growing and living. Also it can 

be different for each size of the tree (sampling, pole, etc.). That makes ((1+1)·3+1)·2·4=56 parameters 

for each tree. Lots of numbers. 

Let’s simplify: 

Best parameters will be still different, but the width will be the same in each parameter: 

(3+1+1)·2·4=40 

Ok, let say, that every size of tree has the same parameters: 

(3+1+1)·2=10 

We can say that best parameters for growing are the same as best parameters for living: 

3+1+2=6 

This is the simplest of the simplest models here. Best conditions are for every size of trees and what 

we want to calculate (living or growing up). Also the width is the same. Changes only the possibility 

of death or survival. 

 

5.2. Non-symmetrical triangle model 

This model is assuming that the width of the triangle is not the same on both of sides: 
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This model brings even more parameters which describe the tree: 

((1+2)·3+1)·2·4=80 parameters in worst case 

                                                      
3
 Remember that we defined the death possibility by „1- live possibility”. 
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5.3. Symmetrical gauss model 

This is based on gauss function: 


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Where μ is the position of maximum on x-axis and σ is a width at half maximum of the function. 

0.2 0.4 0.6 0.8 1.0
temperature
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The number of parameters needed for this model is between 6 and 56 (like in the first described 

model). 

 

5.4.  Non-symmetrical gauss model 

This contains, like in the second model, not symmetric function, based on gauss: 

0.2 0.4 0.6 0.8 1.0
temperature
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0.4

0.6

0.8

1.0

possibility

 
In my opinion this function describes the behaviour in the most complex and natural way. But to 

describes one tree we need up to 80 parameters. This is way to much. 

 

5.5.  Conclusion- best options 

To describe one tree we need at least 6 parameters. Two of described models are based on triangle, 

another two- on gauss function. What is surprising, gauss- based functions are easier to implement in 

the code. Simple symmetric gauss (3
rd

 model) needs no intervals in implementation (first triangle 

model can be realised by intervals or some comparing and abs function- then intervals are not needed). 

I would start implementation with gauss based functions. 

What is worth noting, gauss function is always greater than 0. There will be always a possibility to 

stay alive or grow up for a tree in this model. 

 

6. Features of soil 

Every soil has its own features: temperature, humidity and fertility. When we have all the land as a one 

soil, it is very easy to calculate every possibility values. But when we have to mix soils, that can be 

hard. Best option is to notice, that the map is divided into triangles and each triangle has its vertices on 

the nodes. There the trees are growing. Also each triangle can be another type of soil. 

So each tree has 6 parts of land in its neighbourhood. 

The simplest way to mix the features of land is to make a simple arithmetic mean for each of them: 
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654321 fertilityfertilityfertilityfertilityfertilityfertilityfertility mean 

 

This numbers should be considered in calculations. 

 

7. Conclusion- first model 

My model includes following steps: 

 Take a tree (every constant Δt time) 

 Find the nearest parts of land 

 Calculate mean features of soil 

 Calculate possibilities of surviving (→dying) and growing up 

 Make a step for found possibilities. 

 

The found values are constant during the game (and with simplest models also with growing tree), so 

we can keep them in a tree object or somewhere. Then most of steps will be skipped and the 

calculations will be faster. 

 

How many calculations we will make for whole map? 

The biggest map contains is 512x512, what means 262144 places for trees. Then we want to make the 

steps every 2 seconds. So we have 131072 calculations every 1 second. The calculations should be 

faster than 0.00763 ms, what is very difficult. Longer time mean that the Widelands will not work 

properly. 

 

8. Introduction for second model 

Second model is a bit more complicated. We can do calculations only once. We can ask another 

question: “How long the tree will live on the land?” instead of “Will the tree survive?”. 

The rules for calculating the basics possibilities are the same, but the last equations will change. The 

possibility theory answers on both questions and gives simple answers how to calculate both things. 

 

I’m sorry, but I can’t describe this idea right now. If anyone is interested on it, please contact 

with me. 

 

9. Appendix- manual 

I know that this was hard to create good maps for game in Widelands. My first maps weren’t so good 

because I didn’t know how the trees behave on each ground. After some testing I’ve given numbers in 

another work (Foresters and woodcutters). This should be somewhere given in a table: features of soils 

and best conditions for each trees. We can make a simple table like this (this is an example!): 

 

 

 

 

  Soil 

Feature 

Temperature Humidity Fertility 

Greenland 

Meadow 1 0.4 0.7 0.9 

Meadow 2 0.45 0.65 0.8 

Meadow 3 0.5 0.6 0.9 

Meadow 4 0.55 0.55 0.8 

Steppe       

… … … … … 
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  Best conditions (living) Best conditions (growing up) 

Tree Temperature Humidity Fertility Temperature Humidity Fertility 

Larch 0.4 0.35 0.5 0.45 0.5 0.6 

Spruce 0.25 0.35 0.5 0.4 0.4 0.6 

Alder 0.6 0.6 0.4 0.55 0.5 0.5 

Aspen 0.6 0.4 0.6 0.45 0.45 0.7 

… … … … … … … 

 

 

 

 

 

Any questions? Just ask. 

Any mistakes? Please point them out! 

kalkulator_empire@tlen.pl 

https://wl.widelands.org/profile/einstein13/ 

http://student.agh.edu.pl/~rak/widelands/ 
 

mailto:kalkulator_empire@tlen.pl
https://wl.widelands.org/profile/einstein13/
http://student.agh.edu.pl/~rak/widelands/

