python-bumps 0.7.14-1 source package in Ubuntu

Changelog

python-bumps (0.7.14-1) unstable; urgency=medium

  [ Stuart Prescott ]
  * New upstream release.

  [ Debian Janitor ]
  * debian/copyright: use spaces rather than tabs to start continuation
    lines.
  * Set upstream metadata fields: Repository, Repository-Browse.

 -- Stuart Prescott <email address hidden>  Thu, 09 Jan 2020 15:05:49 +1100

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any-amd64 any-i386 all powerpc
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Focal release universe misc

Builds

Focal: [FULLYBUILT] amd64

Downloads

File Size SHA-256 Checksum
python-bumps_0.7.14-1.dsc 2.6 KiB cd25781967bf89d195a1e7d20714591e383e74edd8f28684b7239a2c568bd3b8
python-bumps_0.7.14.orig.tar.gz 3.2 MiB fb540de9a2967e8155cb94c84c36ecddb677c19e0433e752a6636ce99ebde04a
python-bumps_0.7.14-1.debian.tar.xz 12.6 KiB 78c2e4f7f8bb29f913e9dd4bcb3fe03df2cd065d475ba37af50e8ed5b8ad8197

Available diffs

No changes file available.

Binary packages built by this source

bumps-private-libs: data fitting and Bayesian uncertainty modeling for inverse problems (libraries)

 Bumps is a set of routines for curve fitting and uncertainty analysis
 from a Bayesian perspective. In addition to traditional optimizers
 which search for the best minimum they can find in the search space,
 bumps provides uncertainty analysis which explores all viable minima
 and finds confidence intervals on the parameters based on uncertainty
 in the measured values. Bumps has been used for systems of up to 100
 parameters with tight constraints on the parameters. Full uncertainty
 analysis requires hundreds of thousands of function evaluations,
 which is only feasible for cheap functions, systems with many
 processors, or lots of patience.
 .
 Bumps includes several traditional local optimizers such as
 Nelder-Mead simplex, BFGS and differential evolution. Bumps
 uncertainty analysis uses Markov chain Monte Carlo to explore the
 parameter space. Although it was created for curve fitting problems,
 Bumps can explore any probability density function, such as those
 defined by PyMC. In particular, the bumps uncertainty analysis works
 well with correlated parameters.
 .
 Bumps can be used as a library within your own applications, or as a
 framework for fitting, complete with a graphical user interface to
 manage your models.
 .
 This package installs the compiled libraries used by the Python modules.

bumps-private-libs-dbgsym: debug symbols for bumps-private-libs
python-bumps-doc: data fitting and Bayesian uncertainty modeling for inverse problems (docs)

 Bumps is a set of routines for curve fitting and uncertainty analysis
 from a Bayesian perspective. In addition to traditional optimizers
 which search for the best minimum they can find in the search space,
 bumps provides uncertainty analysis which explores all viable minima
 and finds confidence intervals on the parameters based on uncertainty
 in the measured values. Bumps has been used for systems of up to 100
 parameters with tight constraints on the parameters. Full uncertainty
 analysis requires hundreds of thousands of function evaluations,
 which is only feasible for cheap functions, systems with many
 processors, or lots of patience.
 .
 Bumps includes several traditional local optimizers such as
 Nelder-Mead simplex, BFGS and differential evolution. Bumps
 uncertainty analysis uses Markov chain Monte Carlo to explore the
 parameter space. Although it was created for curve fitting problems,
 Bumps can explore any probability density function, such as those
 defined by PyMC. In particular, the bumps uncertainty analysis works
 well with correlated parameters.
 .
 Bumps can be used as a library within your own applications, or as a
 framework for fitting, complete with a graphical user interface to
 manage your models.
 .
 This is the common documentation package.

python3-bumps: data fitting and Bayesian uncertainty modeling for inverse problems (Python 3)

 Bumps is a set of routines for curve fitting and uncertainty analysis
 from a Bayesian perspective. In addition to traditional optimizers
 which search for the best minimum they can find in the search space,
 bumps provides uncertainty analysis which explores all viable minima
 and finds confidence intervals on the parameters based on uncertainty
 in the measured values. Bumps has been used for systems of up to 100
 parameters with tight constraints on the parameters. Full uncertainty
 analysis requires hundreds of thousands of function evaluations,
 which is only feasible for cheap functions, systems with many
 processors, or lots of patience.
 .
 Bumps includes several traditional local optimizers such as
 Nelder-Mead simplex, BFGS and differential evolution. Bumps
 uncertainty analysis uses Markov chain Monte Carlo to explore the
 parameter space. Although it was created for curve fitting problems,
 Bumps can explore any probability density function, such as those
 defined by PyMC. In particular, the bumps uncertainty analysis works
 well with correlated parameters.
 .
 Bumps can be used as a library within your own applications, or as a
 framework for fitting, complete with a graphical user interface to
 manage your models.
 .
 This package installs the library for Python 3.