pycuda 2017.1.1-2 source package in Ubuntu

Changelog

pycuda (2017.1.1-2) unstable; urgency=medium

  * Rebuild for CUDA 9.1.
  * Update my email to @debian.org.
  * Add Multi-Arch: no for all binary packages.
  * Reorder debian/copyright, per tip from lintian.

 -- Tomasz Rybak <email address hidden>  Fri, 09 Mar 2018 19:07:39 +0100

Upload details

Uploaded by:
Tomasz Rybak
Uploaded to:
Sid
Original maintainer:
Tomasz Rybak
Architectures:
amd64 all
Section:
python
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Bionic release multiverse python

Builds

Bionic: [FULLYBUILT] amd64

Downloads

File Size SHA-256 Checksum
pycuda_2017.1.1-2.dsc 2.6 KiB 6e317d919998b8e0b48199f2003db25d3ae159065b618c9a983c9f80287439a1
pycuda_2017.1.1.orig.tar.xz 180.0 KiB 744a7126ce3a9ace705dbc2961a53173ec1fd6760b956e55c18613a3f506d6de
pycuda_2017.1.1-2.debian.tar.xz 10.0 KiB ced0f4dd285f49c42a1e75b467a1a2814ac550272374ac6247a79ee6cbb8755f

No changes file available.

Binary packages built by this source

python-pycuda: Python module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.

python-pycuda-dbg: Python module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions build for the Python debug interpreter.

python-pycuda-doc: module to access Nvidia‘s CUDA computation API (documentation)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains HTML documentation and example scripts.

python3-pycuda: Python 3 module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains Python 3 modules.

python3-pycuda-dbg: Python 3 module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions for the Python 3 debug interpreter.