pycuda 2017.1.1-1 source package in Ubuntu

Changelog

pycuda (2017.1.1-1) unstable; urgency=low

  * New upstream release.
  * Update Standards-Version to 4.1.3.
    * Use DEB_BUILD_OPTIONS for nodoc option.
  * Patch Sphinx documentation to allow for reproducible builds.
  * Do not try to fetch external Sphinx objects, use ones from Debian
    packages.
  * Use dpkg's pkg-info.mk instead of dpkg-parsechangelog.
  * Update d/rules get-orig-source to remove all git-related files.
    * Remove non-DFSG-compatible example file.
  * Refresh patches.
  * Change Priority of debugging packages to optional.
  * Change debian/watch file to use HTTPS, as suggested by lintian.
  * Use HTTPS URL of upstream URL.

 -- Tomasz Rybak <email address hidden>  Wed, 27 Dec 2017 22:35:03 +0100

Upload details

Uploaded by:
Tomasz Rybak
Uploaded to:
Sid
Original maintainer:
Tomasz Rybak
Architectures:
amd64 all
Section:
python
Urgency:
Low Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Builds

Bionic: [FULLYBUILT] amd64

Downloads

File Size SHA-256 Checksum
pycuda_2017.1.1-1.dsc 2.6 KiB 0bc8dd9273b821b250a2cf84f12cc102c718df9db480e10671c8f036bc7f3145
pycuda_2017.1.1.orig.tar.xz 180.0 KiB 744a7126ce3a9ace705dbc2961a53173ec1fd6760b956e55c18613a3f506d6de
pycuda_2017.1.1-1.debian.tar.xz 9.9 KiB 06658bfb6a71905c1f5a4909a94f2badf86aaf3aa69c7f316ce0e70e3ebd641f

No changes file available.

Binary packages built by this source

python-pycuda: Python module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.

python-pycuda-dbg: Python module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions build for the Python debug interpreter.

python-pycuda-doc: module to access Nvidia‘s CUDA computation API (documentation)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains HTML documentation and example scripts.

python3-pycuda: Python 3 module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains Python 3 modules.

python3-pycuda-dbg: Python 3 module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions for the Python 3 debug interpreter.