# Advanced Physics A I <br> Problem sheet 4 <br> due Thursday, 2006.10.12 

## Problem 12 (5 points)

Consider a mass point moving along an ellipse in the plane with a frequency such that it needs two seconds for three full orbits (i.e. for $6 \pi$ ).
a) Derive the trajectory in Cartesian coordinates

$$
\vec{r}(t)=(x(t), y(t), z(t))
$$

$$
\text { where } x(t)=a \cos (\omega t) \text { (1 point) }
$$

b) What is the force acting on the mass point? (1 point)
c) Calculate the angular momentum of the mass point. Why is it conserved? (1 point)
d) What is the area $\Delta A$ swept out by the position vector in one second? (2 points)

## Problem 13 (13 points)

Consider a particle of mass m in a force field with potential:

$$
V(r)=\frac{\alpha}{r^{2}}
$$

a) What do you know about force, energy, and angular momentum from the general considerations in the lecture? ( 2 points)
b) Choose the coordinate system such that for $\alpha>0$ :

$$
r_{\min }=r(t=0), \phi\left(r_{\min }\right)=0
$$

Note that the radial velocity vanishes at $r_{\text {min }}$. Plot $V_{e f f}$ qualitatively if it is defined in analogy to the lecture. Calculate $r_{\text {min }}$ as a function of $l$ and $E$. (3 points)
c) Determine $r=r(t)$ and $r=r(\phi)$ for $E>0$ and $\alpha>0$. What is the trajectory for $\alpha>0$ ? (3 points)
Hint: Express $E$ and $\dot{r}$ in terms of $r_{\text {min }}$. For solving the integral replace $r_{\text {min }} / r^{\prime} \equiv$ $z$. Calculate first $t(r)$, next $r(t)$; use the angular momentum to find $\phi(r)$ and then $r(\phi)$.
d) Voluntary How does $V_{\text {eff }}$ change for $\alpha<0$ ? When do we have a bounded motion for an attractive potential $(\alpha<0)$ ? Determine $r_{\text {max }}$ for this case. (3 points)
e) Voluntary For $r(t=0)=r_{\text {max }}$ determine the time $t_{0}$ after which the particle ends up in the center of the force field at $r=0$. ( 2 points)

## Problem 14 (6 points)

There is a famous so-called Lenz-Runge vector that can be derived as a conserved quantity for $1 / r$-potentials. It is defined according to:

$$
\vec{A}=(\dot{\vec{r}} \times \vec{L})+V(r) \vec{r}
$$

with $\vec{L}$ the angular momentum and $V(r)$ the potential. $\vec{A}$ is the Lenz-Runge vector.
a) Let $V(r)=-\frac{\alpha}{r}$ for $\alpha>0$. Show that $\vec{A}$ is a conserved quantity. ( 2 points)
b) What is the absolute value of $\vec{A}$ ? Use that the velocity is perpendicular to the angular momentum. (2 points)
c) voluntary Write the trajectory $r(\phi)$ by means of $\vec{A}$ in the form:

$$
\frac{1}{r}=\frac{1+\epsilon \cos \phi}{\text { const }}
$$

where $\phi=\angle(\vec{A}, \vec{r})$, and const as well as $\epsilon$ are expressed in terms of $m, \alpha, E$, and l. (2 points)

Hint: Start with an evaluation of $\vec{A} \cdot \vec{r}$.

