Advanced Physics A I

Problem sheet 4 due Thursday, 2006.10.12

Problem 12 (5 points)

Consider a mass point moving along an ellipse in the plane with a frequency such that it needs two seconds for three full orbits (i.e. for 6π).

a) Derive the trajectory in Cartesian coordinates

$$\vec{r}(t) = (x(t), y(t), z(t))$$

where $x(t) = a\cos(\omega t)$ (1 point)

- b) What is the force acting on the mass point? (1 point)
- c) Calculate the angular momentum of the mass point. Why is it conserved? (1 point)
- d) What is the area ΔA swept out by the position vector in one second? (2 points)

Problem 13 (13 points)

Consider a particle of mass m in a force field with potential:

$$V(r) = \frac{\alpha}{r^2}$$

- a) What do you know about force, energy, and angular momentum from the general considerations in the lecture? (2 points)
- b) Choose the coordinate system such that for $\alpha > 0$:

$$r_{min} = r(t=0), \phi(r_{min}) = 0$$

Note that the radial velocity vanishes at r_{min} . Plot V_{eff} qualitatively if it is defined in analogy to the lecture. Calculate r_{min} as a function of l and E. (3 points)

- c) Determine r = r(t) and $r = r(\phi)$ for E > 0 and $\alpha > 0$. What is the trajectory for $\alpha > 0$? (3 points) Hint: Express E and \dot{r} in terms of r_{min} . For solving the integral replace $r_{min}/r' \equiv z$. Calculate first t(r), next r(t); use the angular momentum to find $\phi(r)$ and then $r(\phi)$.
- d) Voluntary How does V_{eff} change for $\alpha < 0$? When do we have a bounded motion for an attractive potential ($\alpha < 0$)? Determine r_{max} for this case. (3 points)
- e) Voluntary For $r(t = 0) = r_{max}$ determine the time t_0 after which the particle ends up in the center of the force field at r = 0. (2 points)

Problem 14 (6 points)

There is a famous so-called Lenz-Runge vector that can be derived as a conserved quantity for 1/r-potentials. It is defined according to:

$$\vec{A} = (\dot{\vec{r}} \times \vec{L}) + V(r)\vec{r}$$

with \vec{L} the angular momentum and V(r) the potential. \vec{A} is the Lenz-Runge vector.

- a) Let $V(r) = -\frac{\alpha}{r}$ for $\alpha > 0$. Show that \vec{A} is a conserved quantity. (2 points)
- b) What is the absolute value of \overline{A} ? Use that the velocity is perpendicular to the angular momentum. (2 points)
- c) voluntary Write the trajectory $r(\phi)$ by means of \vec{A} in the form:

$$\frac{1}{r} = \frac{1 + \epsilon \cos \phi}{const},$$

where $\phi = \angle(\vec{A}, \vec{r})$, and *const* as well as ϵ are expressed in terms of m, α, E , and *l*. (2 points)

Hint: Start with an evaluation of $\vec{A} \cdot \vec{r}$.