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Abstract. Large scale, deep survey missions such as GAlkefined for this purpose. The main ones are the effective temper-
will collect enormous amounts of data on a significant fracticature, T ¢, the surface gravitypg g, and the metallicity, [M/H].
of the stellar content of our Galaxy. These missions will réo these can also be added the alpha abundafegs(which
quire a careful optimisation of their observational systems imeasure the devations away from the ‘standard’ abundance ra-
order to maximise their scientific return, and will require relitios), the photospheric microturbulence velocity,..., and the
able and automated techniques for parametrizing the very lasgginction by the interstellar medium, Af(although not intrin-
number of stars detected. To address these two problems, lsic-to the star, it is necessary for determining its luminosity).
vestigate the precision to which the three principal stellar pslasses and ages can then be determined from stellar structure
rameters Teg, log g, [M/H]) can be determined as a functionand evolution models and with calibration via binary systems.
of spectral resolution and signal-to-noise (SNR) ratio, usingtas important to realise that this modelling is complex, and a
large grid of synthetic spectra. The parametrization techniquenismber of assumptions have to be made. There is, therefore,
a neural network, which is shown to provide an accurate threelimit to how well we can determine physical properties from
dimensional physical parametrization of stellar spectra acrossxectra.
wide range of parameters. Itis found that even at low resolution Historically, spectroscopic parameters have been measured
(50—100& FWHM) and SNR (5-10 per resolution element)indirectly through the MK classification system (Morgan et al.
Teg and [M/H] can be determined to 1% and 0.2 dex respet943) or via colour-magnitude and colour-colour diagrams. In
tively across a large range of temperatures (4000—30 000 K) dhd MK system, the two parameteyectral typeandluminosity
metallicities (3.0 to+1.0 dex), and thdbg g is measurable to class act as proxies foll . andlog g. Originally a qualitative
+0.2 dex for stars earlier than solar. The accuracy of the resudtgstem relying on a visual match between observed spectra and
is probably limited by the finite parameter sampling of the datesystem of standards, much progress has been made in quantify-
grid. The ability of medium band filter systems (with 10-1%ng it with automated techniques (e.g. Weaver & Torres-Dodgen
filters) for determining stellar parameters is also investigatéB97; Bailer-Jones et al. 1998). The most commonly used classi-
Although easier to implement in a unpointed survey, it is fourfitation techniques have been neural networksy@nahatching
that they are only competitive at higher SNRs%0). to templates (or more generally, minimum distance methods). A
summary of recent progress in this area is given by von Hippel
Key words: methods: data analysis — methods: numerical & Bailer-Jones[(2000).
surveys — stars: Hertzsprung—Russel (HR) and C-M diagrams — Despite this focus on the MK system, it is not well suited
stars: fundamental parameters — Galaxy: stellar content  to classifying data from the deep surveys which will be central
to the future development of Galactic astrophysics. This is for a
number of reasons, but in particular because it lacks a measure
of metallicity. Although MK does make allowance for various
‘peculiar’ stars, these are defined as exceptions, and the notation
An understanding of the origin, properties and evolution of oig not suited to a statistical, quantifiable analysis. This is prob-
Galaxy requires a careful census of its constituents, in parti¢ematic given the significance of metal poor halo stars in a deep
lar its stellar members. Of special importance are the intringarvey. There is also now no good reason why we should not
physical properties of these stars. The fundamental propertiesermine physical parameters directly from the observational
are mass, age and abundances, as these determine a star’s higdtsy
and future development. However, ages are not observable, andSome attempts have been made to determine the physical
masses can only be directly obtained from some multiple sysarameters of real spectra directly by training neural networks
tems. Thus we must indirectly gain this information via the stebn synthetic spectra. Gulati et dl. (1997a) used this approach to
lar spectrum, and a number of atmospheric parameters have been

1. Background and objectives
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determine the effective temperatures of ten solar metallicity Table 1. Three multiband filter systems proposed for the GAIA mis-
and K dwarfs. Taking the “true” effective temperatures of thesén. All profiles are symmetric about the central wavelengthand
stars as those given by Gray & Corbally (1994), they foundhgve a FWHM ofAX. The profiles of the filters in the Asiago and

Bailer-Jones et al. {1997) determiri&d; for over 5000 dwarfs are c_iefin_ed as Gaus_signs (al_though note _that the f_ormer is onIy_ an ap-
) qxnmanon to the original Asiago system in Munari 1999). The filters

and giants in the range B5—KS, and also showed eVIdenceg{)the selected GAIA system (ESA, in preparation) have flatter tops

sensitivity of the parametrization models to metallicity. nd steeper sides than Gaussians, and have defined relative peak trans-

T_he accuracy with which physical parameters can be qﬁ%l'ssions, T. There is some (intended) redundancy within each filter
termined from a stellar spectrum depends upon, amongst otgygrtem.

things, the wavelength coverage, spectral resolution and signal-

to-noise ratio (SNR). From the point of view of designing a  Asiago mod Stomvil GAIA
stellar survey project it is essential to know how well the stellac. /A AXA | X /A AXNA | X /A AXNA T
parameters can be determined for a given set of these obseB200 1410| 3450 400| 3260 820 0.92

tional parameters. Moreover, given that there is always a lin#860 190| 3800 300| 3750 1460 0.96
to the collecting area and integration time available, there is 41090 170| 4050 200/ 4050 600 0.90

ways a trade-off between spectral resolution, sensitivity and sfg00 120 4450 1100| 4645 450  0.86
coverage 4800 1500| 4600 200| 5075 270 0.78

The goal of this paper is to determine the accuracy witi?o 80| 5150 200\ 5250 2070 0.7
170| 5450 200| 5700 900 0.93

which physical stellar parameters can be determined from spggp 1500| 5500 1000| 6560 240 0.72
troscopic data at a range of SNRs and resolutions which coulghq 1720| 6500 1000| 6740 1160 0.94

realistically be achieved in deep survey mission. This speci- gg40 1700! 6560 200! 7330 1850 0.97
fication rules out high resolution spectra. The parametrization 7500 1000| 7470 280 0.79
work has been carried out using neural networks (Bect. 3) be- 8000 400| 7775 310 0.81
cause they have been shown to be one of the best approaches for 8500 1000| 8160 480 0.87
this kind of work. This is not to presuppose, however, that some 8700 300| 8940 480 0.97
other approach may not ultimately be better. The simulations 9380 200

have been made using a large database of synthetic spectra gen-
erated from Kurucz atmospheric models (Sect. 4). While these

spectra do not show the full range 9f _varlat|on n rgal stell dial velocity determination), but instead will image all objects
spectra, they are adequate for a realistic demonsration of w aé.everal medium and broad band filters (Tdble 1). Three filter

is possible asa function of SNR af‘d resolutiqn. The re_sults Wstems are shown: the system nominally selected for the mis-
presented in Sedfl 5 and summarised and discussed n[lSe%-.o plus two alternatives. The profiles of the two alternatives

Flna_lly, the requirements f_or a.complete survey-oriented Clasﬁre represented as Gaussians in this paper. The ability of these
fication system are given in Sect. 7.

filter system to determine stellar parameters will be compared
with that for spectra of various resolutions.

2. The GAIA Galactic survey mission

The simulations in this paper were partially inspired by the negd The network model
to produce an optimal photometric/spectroscopic system for the . . ) )
GAIA Galactic survey mission. GAIA is a candidate for thé\ Neural network is an algorithm which performs a non-linear

ESA cornerstone 5 mission for launch in 2009 (ESA, in prepRarametrized mappi‘ng betv,v.een'an input \{ecetoand an output
ration). It is primarily an astrometric mission with a precision ofector.y- (The term ‘neural’ is misleading: although originally

a few microarcseconds, and will survey the entire sky down §§veloped to be very simplified models of brain function, many
V=20, thus observing c. £Gstars in our Galaxy. Radial veloci-neural networks have nothing to do with brain research and are

ties will be obtained on board down to V=17.5, thus providingettér described in purely mathematical terms.) The network
a 6D phase space survey (three spatial and three velocity ¢8€d in this paper is a feedforward multilayer perceptron with
ordinates) for stars brighter than this limit. A survey of this siZ¥/0 ‘hidden layers’. These hidden layers form non-linear com-
will have a profound impact on Galactic astrophysics, but fgnatlons of their inputs. The outp_ut from the first hidden layer
achieve this it is essential that the physical characteristics!®fhe vectop, the elements of which are given by

the target objects are measured and correlated with their spatial

and k_inema_tic properties. As GAIA is a_conFinuqust s_cannir}g — tanh (Z w; j$i>

satellite, a fixed total amount of integration time is available for ; ’

each object, so there is a trade-off between resolution, signal-to-

noise ratio and wavelength coverage. For various reasons, These values are then passed through a second hidden layer
current GAIA design does notinclude a spectrograph (other thahich performs a similar mapping, the output from that layer
a 1.5A resolution region between 8470 and g#mtended for being the vectoy
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complexity” trade-off is inherent to almost any type of heuristic
¢ = tanh Z Wj,kD; model.
J

The output from the networky, is then the weighted sum of4. Synthetic spectra

these A large grid of synthetic spectra have been generated using

Zwk e Kurucz atmospheric models (Kurucz_1992) and the synthetic
spectral generation program of Gray (Gray & Corbally 1994).
The parameter grid consists of 3G values between 4000 K
Thetanh function provides the non-linear capability of the netand 30 000K (step sizes between 250 K and 5000 K), 7 values
work, and the weightsy, are its free parameters. The model isf log g between 2.0 and 5.0 dex (in 0.5 steps) and 15 values of
supervised, which means that in order for it to give the requir@d/H] between—3.0 and4-1.0 dex (step sizes between 0.1 and
input—output mapping it must be trained on a set of represerféab). The microturbulence velocity was fixed at 2.0 krhsThis
tive data patterns. These are inputs (stellar spectra) for which figdded an (almost complete) grid of 3537 atmospheric models.
truetarget outputs (stellar parameters) are known. The trainifgontiguous spectra were calculated between 3000 and 1R 000
is a numerical least-squares minimisation: Starting with raim-0.05A steps with a line list of over 900 000 atomic and molec-
dom values for the weights, a set of spectra are fed through tHer lines. The resolutiom, of these spectra was then degraded
network and the error in the actual outputs with respect to the die 25, 50, 100, 200 and 40FWHM by Gaussian convolution.
sired (target) outputs calculated. The gradient of this error wiBach resolution element is sampled by two pixels, so these res-
respectto each of the N weights is then used to iteratively pert@lgtions correspond to 560, 280, 140, 70 and 35 inputs to the
the weights towards a minimum of the error function. Thus thetwork respectlvely ) These resolutions are considerably lower
training is a minimisation problem in an N-dimensional spacthen the 1-A generally used for MK classification. The spectra
and the resulting input—output mapping can be regarded agere also combined with the transmission curves of the filters
non-linear interpolation of the training data. Once the netwotkable[1) to produce three sets of filter fluxes. Poisson noise
has been trained the weights are fixed and the network usetvas added to all data sets to simulate signal-to-noise ratios of 5,
obtain physical stellar parameters for new spectra. 10, 20, 50 and 1000 per resolution element. The result is 3537
The results in this paper use a network code written by tabsolute spectral energy distributions at each of the 40 combi-
author consisting of five and ten hidden nodes inthe first and seations of resolution and SNR. The absolute flux information
ond hidden layers respectively. The complexity of the netwoik retained.
is determined by the number of hidden nodes and layers. While It is noted that Kurucz models do not produce highly ac-
networks with a single hidden layer can provide non-linear magdrate spectra for all types of stars. This is particularly true at
pings, experience has shown that a second hidden layer can leadT .« as they exclude water opacity (and there are no wa-
to considerable improvement in performance (Bailer-Jonestet lines in the line lists). For this reason spectra have not been
al.[1998). This has been confirmed with the data in this papealculated below 4000 K. Furthermore, the models lack chro-
Significant further improvement is not expected through the agtospheres and so do not reproduce features such as emission
dition of more hidden nodes/layers. The network has three oiitthe cores of the GaH & K absorption lines. For the present
puts, one for each of the paramet&ls:, log g and [M/H]. The investigation, however, it is not necessary to have highly accu-
error which is minimised is the commonly-used sum-of-squartgase individual spectra, but spectra which reflect differences of
error (the sum being over all training patterns and outputs), éRe appropriate scale and complexity.
cept that the error contribution from each output is weighted by
a factor related to the precision with which that parameter can
be determined.
| stress that a neural network is not fundamentally differeAss the neural network is a parameter fitting algorithm, it is
from many other parameter fitting algorithms. Its strengths a@esential that its performance is evaluated on an independent
thatithas a fastand straight-forward training algorithm, can mapt of data from that on which it is trained. For this purpose,
arbitrarily complex functions (given sufficient data to determineach of the 40 data sets was randomly split into two halves and
the function), and can be parallelised in software or hardwaree used for training (1760 spectra) and the other for testing
to achieve considerable increases in speed. One of the comitiofb9 spectra)log,,Teq (rather tharl'.g) is used as a target
criticisms of neural networks is that it is difficult to interprein the networks to reduce the dynamic range of this parameter
their weights and get an idea of exadtigw they achieve their and give a better representation of the uncertainties. The input
results. While this is essentially true, part of this difficulty stemsnd output parameters are scaled to have zero mean and unit
from the fact that the models are problem-independent: thetandard deviation to prevent ‘saturation’ of the network during
are purely mathematical models that do not explicitly take intaaining.
account the physics of the problem. Moreover, in order to fully For each data set @mmittee of three identical networks
understand the model it would be necessary to simplify it, amdhs trained from different initial random weights. The resul-
thisinturnwould reduce its performance. This “interpretabilitytant parameter for any star is then the average from the three

Spectral parametrization results
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SNR SNR
5 1020 50 1000 5 1020 50 1000
T T T T T T T

networks. This helps to reduce the effects of imperfect train-
ing convergence. Each network was trained with a conjugate 1
gradient algorithm for 10 000 iterations and used weight dec
regularisation to avoid overtraining. More training did not re® 0.8
duce the error further. The longest training time (for the IargeQ
input vector) was about one day on a Sun SPARC Enterprige 9-6
(no parallelisation of the code). The time to parametrize was&f
order10~—3 seconds per spectrum. = -
The precision with which physical parameters can be deg- 02 [
termined from a stellar spectrum depends not only on the SI\E? r
and resolution, but also on the type of star. For example, itis
more difficult to determine the metallicity of hot stars on ac- T . ——— .
count of the almost complete absence of metal lines. Thereforg,
I summarise the performance of each data set for three differgnt 0.8

temperature ranges (for atlg g and [M/H]): :o o ;'/ 1\‘ s R Neo —=8

1. T.g < 5800K (stars later than solar — 408 spectra in the te§°t Z/ A:—:
subset) g 04 1 rF -

2. 5800« Teg < 10000 (A and F stars — 888 spectra in thé; r 1r ]
test subset) £ o2p 1r .

3. Teg > 10000K (O and B stars — 463 spectra in the test bt d B
subset)

The error measure | use is the average absolute eyafreach 0.03
parameter, i.e. the absolute difference between the network ogit-
put and the target value averaged over all stars in the test suﬁget
for that temperature range. This error is more robust than tRe0-02
often-used RMS error because itis less distorted by outliers afRd
is more characteristic of the majority of the error distribution‘é 0.01
For a Gaussian distributionr = 1.25¢, although some of the g
error distributions deviate significantly from Gaussian. 2z : -
The results of the parametrization process are shown in o teelovnlonn b b ] Lo b b Lo b L
Figs[1EB and tabulated in Tab@§P—4. Before interpreting these %% 1 15 2 25 3 05 1 15 2 25 3
results we should consider the limits which the data themselves log SNR log SNR
place on the performance. First, the network will be unable . 1. T < 5800 K. Error in the determination of physical parameters
produce errors smaller than the smallest variations in the dataa function of SNR for spectra at different resolutions (left column)
set. If, to take a hypothetical example, the spectra did not charagé for three sets of filters (right column). The different resolutions
as the metallicity changed by 1.0 dex, we could not expect tglzown in the left column are 25 (open triangles, dotted line), 30

network to determine [M/H] to much better than 0.5 dex. Sefflled squares, dot-dash line), 18qfilled circles, short dashed line),
Q0A (filled triangles, long dashed line) and 48@open squares, solid

ond, the grid of atmospheric models represents the physicalaé The three fiter Systems in the right column are Asiago (flled cir
.. . . . r 1 Sys Sl 19 u slag 1 Ir-
rameters at a finite sampling, e.9. a constant step size of 0.5 cles, short dashed line), modified @mvil (filled squares, dot-dash

for l_ogg. Thl.s .Samplmg does n.Ot in itself limit the preCISlc_)r]ine) and GAIA (filled triangles, long dashed line), and the 400A
achlevaple; it is perfectly possible for the network to Iegltlr'esults are shown again for comparison (open squares, solid line). For
mately give an error much smaller than the sampling becayg)iots the vertical axis is the mean absolute erroacross all spec-

the network is minimising a continuous error function and Nt in the test subset in this temperature range. Note that the fractional
just obtaining the best match between a spectrum and a se&@dr in T.q is equal to 2.3 times the error ibg,,Tex. The hori-
templates. Nonetheless, the network input—output mapping iszantal dotted lines on thieg g and [M/H] plots are the performances
interpolation of the training data, and the more coarsely sam# random (untrained) networks. This has a small dependence on the
pled the parameter grid the harder it is for the network to getesolution (number of inputs), so the minimum values are shown. The
reliable interpolation. Consequently, while the netwowy be corresponding value foF.g is e = 0.13. The results are tabulated in
able to achieve sub-sampling accuracy, we should not be Slpbled 2EH.

prised if it cannot. Thus to avoid over-interpreting these results

we should not compare two errors which are both smaller than

half the sampling level. Thaverage ‘half-sampling’ values for

[M/H] and log g are 0.2 and 0.25 respectively, and for [Bg; network produces errors smaller than these half-sampling val-
in the three temperature ranges (cool, intermediate and hot) aes (as it does), we cannot know whether the performance is
0.01, 0.01 and 0.03 respectively. The implication is that, if tHenited by the network model or by the data themselves. A dis-
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Fig. 2. Same as Fid]1 but for 5800 T.¢ < 10 000. Fig. 3. Same as Fifl1 but foF . > 10 000 K.

tinction will only be possible with a more sensitive and finely6
sampled grid of atmospheric models. ’

With the above caveat taken into account, | draw attention
to some interesting features in Fig 11-3.

At high SNR (1000) all resolutionsf/filter systems appear to
be equally good at determining any of the parameters. Dif-
ferences will probably become apparent with a more sensi-
tive training grid.

1. Good T.;z determination is possible with all resolu-7. At higher temperatures the accuracy is more sensitive to

tions/filter systems and SNRs. The larger erréfig above SNR than at lower temperatures.
10 000 K may be an artifact of the larger half-sampling valu8. Metallicity determination is more difficult at higher temper-
in this region £1000 K). atures, especially for the filters and low resolution spectra.

2. Only at high resolution caibg g be determined for the This is understandable as at high temperature there are fewer
coolest stars and even then the determination is poor rel- and weaker metal lines which are only significant at high
ative to the hotter stars. This is understandable, at least in SNR and/or resolution.
part, because theg ¢ spectral signature is primarily in the 9. In most cases there is little dif!erence between the perfor-
line widths which are only apparent at high resolution. mances of the=25, 50 and 108 spectra, at least for this

3. Although the three filter systems differ somewhat, they give data grid.
essentially the same performance as each other.

4. The filter systems (each with 10—015 input parameters) haé/
similarlog g andT.¢ as ther=400A spectra (35 inputs).

5. At low SNR, ther=400A spectra and the filters give poorThe results demonstrate that a fully automated neural network
[M/H] and very poorlog g determination for all three tem- can accurately determine the three principal physical parame-
perature ranges. ters from spectroscopic or photometric stellar data, something

e, . .
Summary and discussion
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Table 2. [M/H] accuracy. Tabulation of the results in Figs[1l-3. Th&able 3.log g accuracy. See Tallé 2 for details.

resolution is inA, except for the three filter systems which are denoted

by their names. SNR is the signal-to-noise ratio (per resolution elemggdolution SNR ¢ € €3 €all

in the case of the spectra)., ez andes are the mean absolute errors,_

for the three temperature range$800, 5800—10 000 ans 10 000 K Asiago 1000 0.714 = 0.272 0.197  0.362
. . 50 0.640 0.218 0.440 0.379

respectivelye, is the error across all temperatures (4000—30 000 K). 20 0763 0325 0567 0.494

10 0.828 0.375 0.644 0.555

resolution SNR & €2 €3 €all 5 0.836 0.604 0.665 0.676
Asiago 1000 0.227 0.144 0.353 0.218 modified 1000 0.728 0.238 0.125 0.330
50 0229 0379 0.855 0464 Stromvil 50 0.770 0.260 0.316 0.400
20 0293 0577 0.911 0.593 20 0801 0322 0459 0.475
10 0334 0.668 0.930 0.653 10 0.829 0.401 0.631 0.565
5 0478 0.746 0924 0.726 5 0849 0738 0.699 0.755
modified 1000 0.258 0.185 0.343 0.243 GAIA 1000 0778 0.246 0.183 0.361
Stromvil 50 0.273 0.362 0.852 0.465 50 0.792 0.290 0476 0.461
20 0272 0451 0.932 0.530 20 0.807 0.336 0.643 0.530
10 0296 0523 0.923 0.570 10 0.826 0491 0.684 0.623
5 0455 0616 0.933 0657 5 0.849 0760 0.707 0.768
GAIA 1000 0.230 0.215 0.382 0.261 400 1000 0785 0315 0.126 0374
50 0301 0370 0818 0468 50 0.811 0.357 0.364 0.465
20 0324 0438 0.907 0.530 20 0793 0353 0.517 0.498
10 0385 0.506 0.920 0.582 10 0.813 0.453 0.683 0.597
5 0528 0603 0.996 0.685 5 0829 0799 0.719 0.785
400 1000 0.223 0.182 0.292 0.220 200 1000 0.689 0.212 0.108 0.295
50 0312 0300 0.578 0.376 50 0.797 0.349 0.206 0.414
20 0349 0337 0735 0445 20 0797 0.348 0.268 0.431
10 0346 0359 0.808 0474 10 0.800 0.354 0416 0.474
5 0402 0.341 0.908 0.505 5 0.834 0402 0564 0.545
200 1000 0.167 0.132 0.222 0.164 100 1000 0750 0198 0.115 0.304
50 0252 0213 0313 0248 50 0.770 0.281 0.123 0.353
20 0296 0251 0.454 0.315 20 0.635 0.200 0.115 0.279
10 0.301 0.247 0524 0.332 10 0783 0.294 0.142 0.367
5 0294 0305 0803 0434 5 0719 0.290 0.286 0.388
100 1000 0.160 0.123 0.199 0.151 50 1000 0708 0183 0078 0277
50 0219 0156 0.267 0.200 50 0.546 0.144 0.081 0.221
20 0226 0177 0.302 0.221 20 0542 0152 0.077 0.223
10 0250 0182 0.338 0.239 10 0.607 0.166 0.100 0.251
5 0236 0198 0.568 0.304 5 0554 0.168 0.093 0.238
50 1000 0.147 0.121 0.161 0.138 25 1000 0.665 0.202 0.094 0.281
50 0158 0123 0.186 0.147 50 0.446 0.131 0.090 0.193
20 0174 0146 0.223 0.17/3 20 0.462 0.112 0.070 0.182
10 0191 0155 0232 0.184 10 0520 0.122 0.075 0.202
> 0203 0169 0279 0.206 5 0489 0115 0.075 0.191
25 1000 0.140 0.103 0.132 0.119

50 0.141 0.113 0.160 0.132
20 0.154 0.126 0.172 0.145
10 0.164 0.129 0.191 0.154

5 0170 0137 0214 0.165 resolution and SNR is perhaps not surprising when we consider

that the spectra have absolute fluxes, which will be the case with
high precision parallax missions such as GAIA. However, the
which has not previously been demonstrated. Moreover, thigre distant objects will have lower precision parallaxes and
work has used spectra of considerably lower resolution thaaence errors in thenean flux level. But even if we completely
has been used before in automated classifiers. Even at low rggere distance information (and flux normalise the spectra),
olution (50—100& FWHM) and SNR (5-10 per resolution ele-the shape of the spectrum is still a strong indicatcrgf: For
ment), neural networks can yield good determination¥'gf example, Bailer-Jones et al. (1998) obtained an MK spectral
and [M/H], and even fotog g for stars earlier than solar. Still type precision of 0.8 subtype& (ogT.;=0.010-0.015) across
lower resolutions permit good results provided the SNR is highwide range of spectral types (B2—M7) using flux normalised
enough & 50). That goodT.s can be achieved even at lowspectra. This is similar to what can be achieved from broad band
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Table 4. T.¢ accuracy. See Tahlé 2 for details. dening. Slightly better precision can be obtained from the slope
of the Paschen continuum and size of the Balmer discontinuity.
resolution SNR ¢ €2 €3 €all The latter may also be used to meadorgg to +0.2 dex. With
Asiago 1000 0.0057 0.0044 0.0094 0.0060 spectra at a fewh resolution over a similar wavelength range
50 0.0032 0.0049 0.0189 0.0081 to that used here, Cacciari et al. (1987) obtained uncertainties
20 0.0046 0.0045 0.0209 0.0087 in log T andlog g of 0.01 and 0.04 respectively. Sinnerstad
10 0.0054 0.0065 0.0219 0.0102 (1980) made uvby, photometric measurements of B stars, and
5 0.0055 0.0071 0.0174 0.0093 for uncertainties of 0.005 i® and of 0.01 in u-b (i.e. SNR
modified 1000 0.0033 0.0030 0.0102 0.0049 ~ 200), infers errors in lodl'.g andlog g of 0.004 and 0.08
Stromvil 50 0.0050 0.0045 0.0167 0.0077 respectively. These are similar to or slightly better than the re-
20 0.0035 0.0058 0.0204 0.0089 sults for similar stars in Tablés [2-4;] at the highest resolu-
10 0.0034 0.0052 0.0239  0.0095 tions. High resolutions( < 0.1 A) spectra have generally been
5 0.0066 0.0086 0.0255 0.0124 used to determine metallicity, and in a review, Cayrel de Strobel
GAIA 1000 0.0072 0.0070 0.0095 0.0077 (1985) notes that metallicity can be determinedti®.07 dex
50 0.0033 0.0038 0.0142 0.0063 at SNR=250 (but only-0.2 dex at SNR=50) provided the ef-
20 0.0037 0.0055 0.0232 0.0096 fective temperature and gravity are approximately known. At
10 0.0050 0.0070 0.0198 0.0098 lower SNR (10-20), Jones et al. (1996) could determine [Fe/H]
5 00075 00110 00319 00155 to +0.2 dex for G stars using a set of spectroscopic indices mea-
400 1000 0.0077 0.0041 0.0098 0.0064 sured at A resolution in the range 4000-5080 again using
50 0.0041 0.0038 0.0106 0.0057 a known effective temperature.

20 0.0049 0.0073 0.0187 0.0097 More recently, Katz et al[ (1998) have used a minimum

10 0.0046 = 0.0064 ~ 0.0192  0.0093 distance method to parametrize spectra by finding the clos-
5 0.0062 0.0091 0.0239 0.0123 . . -
est matching template spectrum. The template grid consisted
200 1000  0.0030  0.0033  0.0067  0.0041 of 211 flux calibrated spectra (3900-6880r ~ 0.1 A) with
50 0.0047°0.0065 0.0085 0.0066 4000 K< T <6300K, —0.29 <[Fe/H]< +0.35, andlog g
20 0.0088 0.0102 0.0134 0.0107 . .
10 00071 00109 00221 0.0130 for dwarfs and giants. Thiaternal accuracy of the method for
5 00063 00097 0.0192 00114 log Teff_, log g and [M/H] was 0.008, 0.28dex, and 0.16 dex
100 1000 0.0051 00022 00051 0.0046 respectively at SNR=100, and 0.009, 0.29 dex and 0.17 dex at
. : . . SNR=10. As expected, their results fog ¢ are much better

50 0.0042 0.0081 0.0071 0.0070 h h in thi he simil .
20 0.0035 00044 00087 0.0053 than those in this paper at the similar temperature raag (

10 0.0046 0.0049 00105 0.0063 Table[3), presumably due to their much higher resolution. In
5 0.0050 0.0074 0.0178 0.0096 contrast, their performance for [M/H] is similar and fagg
50 1000 00030 0.0026 00063 0.0036 somewhat worse than that in _this paper a_t 500 times_ lower reso-
50 0.0031 0.0031 0.0050 0.0036 lution. Their results also confirm that at high resolution a lower
20 0.0037 0.0040 0.0081 0.0050 SNR leads to very little loss in performance. Snider et al. (2000)
10 0.0030 0.0038 0.0071 0.0045 trained and tested neural networks on asetof 182 real F, Gand K
5 0.0031 0.0043 0.0069 0.0047 spectra over the range 3630—489at intermediate resolution
25 1000 0.0062 0.0037 0.0063 0.0050 (~1A), and achievedd errors in logT., log g and [M/H] of
50 0.0034 0.0031 0.0039 0.0034 0.015, 0.41 dex and 0.22 dex respectively, based on training and
20 0.0033 0.0031 0.0038 0.0033 testing a network with a set of 182 real F, G and K spectra.
10 0.0032 0.0030 0.0045 0.0034 When judging the relative values of the different resolu-
5 0.0034 0.0028 0.0050 0.0035 tion/SNR combinations in this paper, we must also take account

of their implementation ‘costs’, specifically the relative integra-
tion times required. Usually for a survey, a fixed total amount of
photometry, |mp|y|ng thdf .4 determination On|y requires Veryintegration time is available for all filters/spectra. In the case of
low resolution. GAIA —which is continuously rotating — a star moves across a
The good performance of ‘high’ resolution spectroscorf?cm plane covered with a mosaic of CCDs which are clocked
(25,&) at very low SNR (/5 per pixel) was not expected. Itat the rotation rate. The different filters are fixed to different
seems to imply that for a given amount of integration time §CDs, so that as a star moves across the mosaic it is recorded
may be better to sacrifice SNR for resolution. It is notewortH§ different wavelength ranges. Thus fewer and/or broader fil-
that while the filters provide godH,, their ability to determine ters would achieve a higher SNR than more or narrower filters.
[M/H] and especiallylog g is very limited at low SNR. Some filters could be replaced with a slitless spectrograph (e.g.
How do these results compare with classical parametriZaPrism or grism). This disperses every point on the sky and
tion methods? Gray (1992) compiles results showing that wittus gives the full integration time for all wavelengths, but at
photometric errors below 0.01 magnitudes, the\Bcolour cal-  the expense of increased sky noise and object confusion. These
ibratesT. to 2—3% (4% for hotter stars) in the absence of re§ould be reduced by using one or more dichroics to redirect the
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light to two or more focal planes. (Confusion would be reducedl. T.g, [M/H] andlog g do not uniquely describe a true spec-
further with GAIA by the fact that each area of sky is observed at trum. Models sensitive to different abundance ratios and
many different position angles over the mission life.) An alter- which include chromospheres (for example) are necessary.
native approach is a set of many medium band filtergd@0 for 2. Kurucz models assume LTE which is known to break down
r=100A over the complete wavelength range, although omis- in a number of regimes (e.g. for very hot stars).
sion of some filters could be achieved). While this avoids th®. Both the atmospheric models and the line lists lack water
two principal disadvantages of the slitless spectrograph, the in- opacity, known to be important for cool stars, thus setting
tegration time per wavelength interval is dramatically reduced. the current lowefT s limit of about 4000 K.

4. Yetmore advanced models (whichinclude dust) are required
7. Development of a survey parametrization system for very cool stars (L and T dwarfs) and brown dwarfs, of

which many will be found by GAIA.
The development of a complete survey parametrization system
will require further research, much of which needs to be directed

at taking better account of the true nature of the observatioddt- Reddening

data. Directions and suggestions for the course of this work @e particular importance is interstellar extinction (reddening),

now given. especially in deep surveys. The extinction can, in theory, be de-
termined by the network by training it on artificially reddened
7.1. Object selection synthetic spectra and providing the network with a “reddening”

output parameter (or parameters). This has been demonstrated
Essentially all of the work in the literature on automated clasgjn [imited data sets by Weaver & Torres-Dodden (1995) and Gu-
fication deals with preselected objects. In contrast, an unpoinfgf et al. (1997b), who determined E{&/) to within 0.05 and
survey will pick up a whole range of objects, necessitating a fif.08 magnitudes respectively. The latter made usefofdso-
tering system to select the stars. Such a system could make|y§gn UV spectra (1251-3164). The former used red spectra
of both object morphology and spectral features, and systefggoo-890a) at 15A resolution and found that the spectral
based on neural networks (e.g. Odewahn &t al. 1993; Millertgne and luminosity class classifications did not degrade much
Coel1996; Serra-Ricart et al. 1996) and Principal Componegtsreddening was added. It is therefore to be expected that the
Analysis (Bailer-Jones et al. 1998) have been proposed. Syglametrizations in the present paper will be robust to redden-
a system must be relatively robust and always allow for ‘Ulhg, particularly as the spectra have a much larger wavelength

known’ objects which can be dealt with manually. coverage. The filter systems proposed for GAIA were of course
designed with interstellar extinction in mind, and a study of its
7.2. Model training impact has been carried out (ESA, in preparation). This work

shows that suitable Q parameters (non-linear combinations of
It will be necessary to have a stellar database for training whigly filter fluxes) used to determine the physical parameters are
takes better account of the larger range of variation presenidfyely insensitive to reddening. It also claims that narrow band
the Galactic stellar population. Ideally, a large set of real specfigers are not necessary for overcoming reddening. In some parts
across a wide range of physical parameters should be obtaigeghe parameter space, reddening is more problematic (e.g. for
for this purpose. Good atmospheric models and synthetic SPRGstars), largely due to a degeneracy between it Egg and
tra are nonetheless still required for determining their physiqg), ;. However, at intermediate and high Galactic latitudes it is
parameters and thus for training the network. There are tWgnected that E(BV) can be determined to within 0.002 mag-
possible approaches to training. The first s to train on syntheigydes. Munari(1999) similarly shows that reddening-free in-
spectra suitably preprocessed to be in the same form as the §iBes exist for the Asiago filter system. As a neural network also
served spectra (e.g. Bailer-Jones ef al. 1997). The alternativiigns non-linear combinations of the filter fluxes, it is reason-

to obtain a representative sample of real spectra with the surggye to suppose that it too will be robust to redenning, although
system, calibrate them, and then use them to train a netwafkis will be the subject of future work.

In theory the latter method gives a better sampling of the true

cosmic variance in the spectra, but of course requires thatarep- .

resentative sample is selected from the survey data. This sanfpfe Binary systems

could be improved as the survey progressed. Neural netwotife parametrization model used in a real survey must confront
are fast to train and apply, so it is realistic to expect that eVeik fact that most stars are in spatially unresolved multiple
for a database df0 objects the network could be retrained andystems. Independent measurement of the physical properties

applied to the whole database in less than a day. of each component is desirable and in principle achievable —
when the brightness ratio is large enough — by training the
7.3. Improved stellar models network with composite spectra. In this case the network model

) would need to have multiple sets of outputs to deal with each
More advanced model atmospheres are required for a num@giponent. An alternative approach is to use ‘probabilistic
of reasons: outputs’ in which the single output for, sa¥.g, is replaced
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with a series of outputs in which each value Bfgz (6000, References
6250, 6500 etc.) is represented separately. The network tlgir]
i
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