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Abstract

In systems consisting of multiple clusters of proces-
sors which employ space sharing for scheduling jobs,
such as our Distributed ASCI1 Supercomputer (DAS), co-
allocation, i.e., the simultaneous allocation of processors
to single jobs in multiple clusters, may be required. In
studies of scheduling in single clusters it has been shown
that the achievable (maximal) utilization may be much less
than ����, a problem that may be aggravated in multiclus-
ter systems. In this paper we study the maximal utilization
when co-allocating jobs in multicluster systems, both with
analytic means (we derive exact and approximate formulas
when the service-time distribution is exponential), and with
simulations with synthetic workloads and with workloads
derived from the logs of actual systems.

1 Introduction

Over the last decade, clusters and distributed-memory
multiprocessors consisting of hundreds or thousands of
standard CPUs have become very popular. In addition,
recent work in computational and data grids [3, 15] en-
ables applications to access resources in different and pos-
sibly widely dispersed locations simultaneously—that is, to
employ processor co-allocation [12]—to accomplish their
goals, effectively creating single multicluster systems. In-
variably, when scheduling parallel jobs in a single cluster,
the utilization is well below ���� [17] even when enough
load is offered to the system, because the jobs in execution
may not leave enough processors idle for any eligible wait-
ing job. This problem is of course also present when using
co-allocation in multicluster systems. In this paper we study
the maximal achievable utilization when using co-allocation

1In this paper, ASCI refers to the Advanced School for Computing and
Imaging in The Netherlands, which came into existence before, and is un-
related to, the US Accelerated Strategic Computing Initiative.

in multicluster systems with both analytic means and with
simulations.

Scheduling parallel jobs in single-cluster systems has re-
ceived very much attention (see, e.g., [14]). In the most sim-
ple model, rigid jobs (which have predefined, fixed sizes)
are scheduled according to the FCFS policy with space
sharing, in which jobs run to completion on exclusively al-
located processors. In order to improve the performance,
techniques such as malleable jobs (which may vary in size
over their lifetimes), gang scheduling (using time sharing
across multiple processors), and different forms of back-
filling (allowing certain jobs not at the head of the queue
to start execution) have been devised. Because of its sim-
plicity, we restrict ourselves in this paper in the context of
multicluster systems to rigid jobs and space sharing, but we
do consider a backfilling policy.

When considering co-allocation in multicluster systems,
it has to be decided whether and how to spread jobs across
the separate clusters. We distinguish three job request types.
Ordered requests need specific numbers of processors in
each of the clusters, while unorderd requests specify only
these numbers and are indifferent as to the clusters in which
these numbers of processors are allocated. For compari-
son with the single-cluster case, we introduce total requests,
which only specify the total number of processors needed,
equal to the number required by (un)ordered requests, in a
single cluster. For the job-component sizes and the job ser-
vice times, we use synthetic distributions and logs of actual
systems.

An important system-oriented performance metric of
parallel systems is the maximal utilization. From a prac-
tical point of view, a high utilization of real systems is of-
ten seen as a measure of successful (and profitable) opera-
tion. In [17] it is shown for real systems that FCFS yields
��� ��� utilization, that backfilling increases it by �� per-
centage points, and that reducing the maximum allowable
job size further increases utilization. From a theoretical per-
spective, a very important problem in mathematical models
of parallel job scheduling is to find the values of such pa-
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rameters as the arrival rates, job sizes, and service times for
which the system is stable. In this paper we are interested
in both points of view.

One aspect we do not explicitly consider in this paper is
the additional communication delays introduced by the rel-
atively slow intercluster connections when jobs are spread
across multiple clusters. As we define the (maximal) uti-
lization based on the total time processors are allocated to
jobs, these delays have hardly any effect on the utilization:
If all jobs experience the same slowdown due to wide-area
communication, then reducing the arrival rate by the same
factor entails the same utilization (although, of course, a
lower throughput).

An important user-oriented metric is the (mean) response
time. In previous papers [8, 9, 10], we have assessed the
influence on the mean response time of the job structure
and size, the sizes of the clusters in the system, the ratio of
the speeds of local and wide-area communications, and of
the presence of a single or of multiple queues in the sys-
tem. Also in [13], co-allocation (called multi-site comput-
ing there) is studied, with as performance metric the (av-
erage weighted) response time. There, jobs only specify a
total number of processors, and are split up across the clus-
ters. The slow wide-area communication is accounted for
by a factor r by which the total execution times are multi-
plied. Co-allocation is compared to keeping jobs local and
to only sharing load among the clusters, assuming that all
jobs fit in a single cluster. One of the most important find-
ings in [13] is that for r less than or equal to ����, it pays to
use co-allocation.

Our five-cluster second-generation Distributed ASCI Su-
percomputer (DAS) [1, 16] (and its predecessor), which was
an important motivation for this work, was designed to as-
sess the feasibility of running parallel applications across
wide-area systems [6, 18, 20]. In the most general setting,
grid resources are very heterogeneous; in this paper we re-
strict ourselves to homogeneous multicluster systems such
as the DAS. Showing the viability of co-allocation in such
systems may be regarded as a first step in assessing the ben-
efit of co-allocation in more general grid environments.

2 The Model

In this section we describe our model of multicluster sys-
tems based on the DAS system.

2.1 The DAS System

The DAS (in fact the DAS2, the second-generation sys-
tem which was installed at the end of 2001 when the first-
generation DAS1 system was discontinued) [1, 16] is a
wide-area computer system consisting of five clusters of
dual-processor nodes, one with 72, the other four with 32

nodes each. The clusters are interconnected by the Dutch
university backbone for wide-area communications, while
for local communications inside the clusters Myrinet LANs
are used. The system was designed for research on parallel
and distributed computing. On single DAS clusters the PBS
scheduler [5] is used, while jobs spanning multiple clusters
can be submitted with Globus [4].

2.2 The Structure of the System

We model a multicluster system consisting of C clusters
of processors, cluster i having Ni processors, i � �� � � � � C.
We assume that all processors have the same service rate.
By a job we understand a parallel application requiring
some number of processors, possibly in multiple clusters
(co-allocation). Jobs are rigid, so the numbers of proces-
sors requested by and allocated to a job are fixed. We call
a task the part of a job that runs on a single processor. We
assume that jobs only request processors and we do not in-
clude in the model other types of resources.

2.3 The Structure of Job Requests

Jobs that require co-allocation have to specify the num-
ber and the sizes of their components, i.e., of the sets of
tasks that have to go to the separate clusters. A job is rep-
resented by a tuple of C values, each of which is generated
from a synthetic distribution or from a log (see Section 2.5),
or is of size zero. We will consider three cases for the struc-
ture of job requests:

1. In an ordered request the positions of the request com-
ponents in the tuple specify the clusters from which the
processors must be allocated.

2. For an unordered request, by the components of the
tuple the job only specifies the numbers of processors
it needs in the separate clusters, allowing the scheduler
to choose the clusters for the components.

3. For total requests, there is a single cluster and a re-
quest specifies the single number of processors needed,
which is obtained as the sum of the values in the tuple.

Ordered requests are used in practice when a user has
enough information about the complete system to take full
advantage of the characteristics of the different clusters.
Unordered requests model applications like FFT, which
needs few data, and in which tasks in the same job com-
ponent share data and need intensive communication, while
tasks from different components exchange little or no infor-
mation.
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2.4 Placement and Scheduling Policies

For ordered and total requests it is clear when a job fits or
not. To determine whether an unordered request fits, we try
to schedule its components in decreasing order of their sizes
on distinct clusters. If placing them in this order does not
succeed, no other order will. Possible ways of placement
include First Fit (FF; fix, once and for all, an order of the
clusters and pick the first one on which a job component
fits) and Worst Fit (WF; pick the cluster with the largest
number of idle processors).

We assume that in the system there is a single global
queue. As the scheduling policy we use First Come First
Served (FCFS), and Fit Processors First Served (FPFS). In
FPFS, when the job at the head of the queue does not fit, the
queue is scanned from head to tail for any jobs that may fit.
To avoid starvation, we introduce a paramater MaxJumps
specifying the maximal number of times a job can be over-
taken, and maintain a counter indicating this number for
each job. Obviously, this counter is non-increasing in the
queue from head to tail. FPFS is a variation on backfilling
[19], for which it is usually assumed that (estimates of) the
service times are available before jobs start, and in which
the job at the head of the queue may not be delayed by jobs
overtaking it.

2.5 The Workload

For the workload, we have to specify the arrival process,
the sizes of the (components of the) jobs, and the service
times of the jobs. In our analysis in Section 4 and in some
of our simulations, we don’t have to specify the arrival pro-
cess; when we do have to specify it, we assume it to be Pois-
son. For both job sizes and service times, we use either syn-
thetic distributions, or logs from actual systems, amongst
which the DAS.

Job Sizes

The basic synthetic distribution of the sizes of the job com-
ponents is either the uniform distributionU 	n�� n�
 on some
interval 	n�� n�
 with � � n� � n�, or the distribution
D�q� defined as follows: D�q� takes values on some inter-
val 	n�� n�
 with � � n� � n�, and the probability of having
job-component size i is pi � qi�Q if i is not a power of 2
and pi � 
qi�Q if i is a power of 2, with Q such that the
pi sum to �. This distribution favours small sizes, and sizes
that are powers of two, which has been found to be a real-
istic choice [11]. In some cases we use the sum of multiple
copies of the distributions defined above for job-component
sizes. For ordered jobs, we always assume that the non-
zero job-component sizes are independent. For unordered
jobs and equal cluster sizes (say N ) we also consider de-
pendent job-component sizes; in that case, for each job we

first generate its total size, say J , and then split into the
smallest possible number of components (dJ�Ne) of equal
size (plus or minus one).

For the job sizes of actual systems, we use the log of the
Cornell Theory Center (CTC) of Feitelson’s parallel work-
load archive [2], and a log of a three-month period of the
largest cluster (with 128 processors) of the first-generation
DAS1 system. When considering multicluster systems of
total size ��� in Section 7, we leave out all jobs of larger
size from the CTC log. Although co-allocation is (was)
possible on the DAS2 (DAS1), so far it has not been used
enough to let us obtain statistics on the sizes of the jobs’
components. As both logs are for single-cluster systems,
they only contain the total sizes of jobs. Statistics of the
two logs are presented in Table 1 (cv stands for coefficient
of variation), and the density of the DAS1 sizes, which also
has a preference for small numbers and powers of two, is
presented in Figure 1. When using these logs, we only con-
sider unordered jobs, clusters of equal size, and generate the
(dependent) job-component sizes as described above.

job-size statistics

no. of jobs mean cv
CTC ��� 
�� ����� ����
CTC-128 ��� ��� ���
 ���

DAS1 
�� ��� �
�
� ����

Table 1. Statistics of the job-size distributions
derived from the logs (in CTC-128, only jobs
of size at most ��� are included).
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Figure 1. The density of the job-request sizes
for the largest DAS1 cluster (128 processors).
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Job Service Times

The synthetic job service-time distributions we use are the
deterministic, the exponential, and the hyperexponential
distributions. For data from actual systems, we again use
the CTC and DAS1 logs. In the DAS1 log, ��� ��� jobs
were recorded with both their starting and ending times,
and so we could compute their service times. Table 2 gives
statistics of the service times in the logs, and Figure 2
presents the density of the DAS1 service times up to ���
seconds, which is the maximal runtime during the day.

service-time statistics

no. of jobs mean cv
CTC ��� 
�� ��� ��
��� ����
CTC-128 ��� ��� ��� ������ ����
DAS1-st ��� ��� 
����� ��
�
DAS1-900 ��� ��� ����� ����

Table 2. Statistics of the service-time distribu-
tions derived from the logs (in DAS1-st, only
the jobs whose service times can be com-
puted are included, and DAS1-900 only con-
tains jobs with service times at most equal to
��� seconds).
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Figure 2. The density of the service times for
the largest DAS1 cluster.

3 Reasons for Capacity Loss

In the model described in Section 2, processors may be
idle even while there are waiting jobs because the job at the
head of the queue does not fit (FCFS), or because no job
further down the queue eligible for scheduling fits (FPFS).

As a consequence, when �m is the maximal utilization, that
is, the utilization such that the system is stable (unstable) at
utilizations � with � � �m (� � �m), in general, we have
�m � �. We define the (average) capacity loss l as the
average fraction of the total number of processors that are
idle at the maximal utilization, so l � ���m. In this section
we discuss the reasons for capacity loss; at least four such
reasons can be distinguished in multicluster systems with
space sharing and rigid jobs.

First, it may be due to the structure of job requests. Or-
dered requests will obviously entail a higher capacity loss
than unordered ones, which in turn yield a higher capacity
loss than total requests.

Second, it may be due to the distribution of the job-
component sizes. With ordered requests, the capacity loss l
can be very high, to the point that it approaches � for large
cluster sizes and large numbers of clusters, as can be seen in
the following somewhat pathological case. When in a mul-
ticluster withC clusters of size N , all jobs have d�N�����e
tasks in cluster � and only one task in all the other clusters,
l is close to �C � �����C for large N , which is arbitrarily
close to � for large C.

Third, the scheduling policy employed may cause capac-
ity loss. The job at the head of the queue may not fit, while
some job further down the queue does fit, and so, a policy
that deviates from the arrival order may have a lower capac-
ity loss than FCFS.

A fourth reason for having �m � � is that we are consid-
ering an on-line problem, taking scheduling decisions with-
out knowledge of future job arrivals or service times. Such
knowledge might be exploited by a policy that deviates from
the arrival order.

4 Formulas for FCFS

In this section we first present an expression for the av-
erage maximal Multi-Programming Level (MPL) in multi-
cluster systems with the FCFS policy and with ordered re-
quests, from which of course �m can be derived. We also
deduce an approximation for the average maximal MPL in
multiclusters with FCFS, unordered requests, and WF com-
ponent placement, which we validate with simulations in
Section 6. Finally, we consider the maximal utilization for
large numbers of clusters and ordered requests. In this sec-
tion we assume that the service-time distribution is expo-
nential.

4.1 Ordered requests

In this section we assume that requests are ordered. Let
F be the (multidimensional) job-size distribution, which
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(allowing components of size zero) is defined on the set

SO �

�
CY
i��

f�� �� � � � � Nig

�
n f��� �� � � � � ��g�

We have F �n� � P �s � n� for n � SO, where � denotes
component-wise (in)equality. Let f be the job-size density,
so f�n� is the probability of having a job of size n � SO .
Denoting by G�i� the i-th convolution of a distribution G
with itself,F �i��N � and F �i��N ��F �i����N � are the prob-
abilities that at least and exactly i random jobs fit on the
multicluster, respectively, where N � �N�� N�� � � � � NC�.
When the job-component sizes are mutually independent,
we have F �i��N � �

Q
j
F
�i�
j �Nj� for i � �� �� � � �, with Fj

the distribution of the j-th components of jobs.
In our treatment of multiclusters with ordered requests

below we follow [7]. There, a queueing model of a multi-
processor with P processors and B memory blocks is stud-
ied. The scheduling policy is First-Come-First-Loaded, in
which a job is allowed from the head of the queue into
the multiprogramming set when its memory requirements,
taken from some discrete distribution F on 	�� B
, can be
satisfied. When the number of jobs does not exceed P , ev-
ery job gets a processor to itself; otherwise processor shar-
ing is employed. The service-time distribution (on a com-
plete processor) is exponential. When P � B, and so every
job has a processor of its own, this model coincides with our
single-cluster model with memory blocks assuming the role
of processors. Under the assumption that there is always
a sufficiently long queue, the Markov chain V with state
space �z�� � � � � zB�, where the zi’s are the memory sizes of
the oldest B jobs in the system, and the MPL, both imme-
diately after a departure and the entailing job loadings, are
studied. It turns out that the behaviour of V is as if FIFO is
used, and, by solving the balance equations, that the asso-
ciated probabilities are as if the zi are independently drawn
from F . In addition, the time-average maximal MPL is de-
rived in terms of convolutions of F .

In our multicluster model, we also consider the sequence
of the oldest jobs in the system such that it includes at least
all jobs in service. Let B be some upper bound of the num-
ber of jobs that can be simultaneously in service (

P
iNi

will certainly do). Let Z � �z�� z�� � � � � zB� be the pro-
cessor state vector, which is the (left-to-right ordered) se-
quence of the sizes of the oldest jobs in the system. Some
first part of Z describes the jobs in service, and the remain-
der the jobs at the head of the queue. When a job leaves,
the new processor state vector is obtained by omitting the
corresponding element from the current vector, shifting the
rest one step to the left, and adding a new element at the
end. Let V be the set of processor state vectors.

Because the service-time distribution is exponential, for
v� w � V , the transition of the system from state v to state

w only depends on v: each of the jobs in service has equal
probability of completing first, and the job at the head of the
queue to be added to the state is random. So in fact, V is
a Markov chain. The result of [7] explained above can be
extended in a straightforward way to our situation—the im-
portant element is that the distributionF simply determines
which sets of jobs can constitute the multiprogramming set,
but the underlying structure of a single or of multiple re-
sources does not matter. So also now, the stationary proba-
bility distribution� on V satisfies

��Z� �
BY
i��

f�zi�� (1)

which means that the distribution of the oldestB jobs in the
system is as if they are independently drawn from F . So,
because the average length of the intervals with i jobs in
service is inversely proportional to i due to the exponential
service, we find for the average maximal MPL M :

M �

PB

i���F
�i��N �� F �i����N �� � ���i� � iPB

i���F
�i��N �� F �i����N �� � ���i�

�

which can be written as

M �
�

��
PB

i�� F
�i��N ���i�i � ���

� (2)

For single clusters this expression coincides with the for-
mula in [7], p. 468. Denoting by s be the average total job
size, the maximal utilization is given by

�m �
M � sP
iNi

� (3)

There is one other case of some interest in which the
maximal utilization can be derived easily, namely when the
service time is deterministic and the system has a slotted
behaviour, which means that all jobs being served simulta-
neously start and finish at exactly the same time. Of course,
if the latter happens once, it will happen forever. This be-
haviour can come about when there are two possible job
sizes that exclude each other, that is, the sum of their sizes
in some dimension i exceeds Ni. Then there is a positive
probability that two consecutive jobs have these sizes, so the
second (and perhaps some other jobs) can only start when
the first completes. From then onwards, in each slot the sys-
tem is filled with random jobs until the next one does not fit.
So the distribution of the sizes of the jobs in service corre-
sponds to the general job-size distribution, and we find for
the maximum time-average MPL M :

M �
BX
i��

�F �i��N �� F �i����N �� � i� (4)

Of course, Eq. (3) also holds here.
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4.2 Unordered requests

We now derive an approximation to the maximal uti-
lization in multiclusters with unordered requests in case all
clusters are of equal size N . For job placement, WF is used.
The job-size distributionF is now defined on

SU � f�s�� s�� � � � � sC� j � � s� � N� si�� � si�

i � �� �� � � � � C � �g�

that is, job requests are represented by a vector with non-
increasing components. Compared to the case of ordered
requests, the case of unordered requests presents some dif-
ficulty for two reasons. First, given a set of unordered jobs,
it is not possible to say whether they simultaneously fit on
a multicluster, because that depends also on the order of ar-
rival of the jobs. For instance, if C � � and N � �, then
if three jobs of sizes ��� ��� �
� ��� ��� �� arrive in this order,
they can all be accommodated, while if they arrive in the
order ��� ��� ��� ��� �
� ��, only the first two jobs can run si-
multaneously. Second, a departure can leave the system in
a state that cannot occur when it is simply filled with jobs
from the empty state. If with the first sequence of arrivals
above the job of size �
� �� leaves, both ��� ��-jobs will have
their largest component in cluster �. Our result below deals
with the first problem—by running over all possible arrival
sequences—but not with the second, which is why it is an
approximation.

We now define the i-fold WF-convolution F � G of two
distributions F�G on SU in the following way. Let for any
C-vector s � �s�� s�� � � � � sC� the reversed vector rev�s�
be defined as rev�s� � �sC � sC��� � � � � s��, and the ordered
vector ord�s� as the vector with the elements of s permuted
such that they form a non-increasing sequence. Now if f� g
are the densities ofF and G, respectively, F �G has density
h defined by:

h�s� �
X

t�u�SU �s�ord�t�rev�u��

f�t� � g�u��

Then, putting F ��� � F � F , we define inductively F �i� �
F �i����F for i � 
� �� � � �. What this amounts to is thatF �i�

is the distribution of the non-increasingly ordered numbers
of processors in the clusters of the multicluster that are in
use when i unordered requests are put on an initially empty
system with WF. Now our approximation of the maximum
average MPL M is (cf. Eq. (2)):

M �
�

��
PB

i�� F
�i��N ���i�i � ���

� (5)

where again B is some upper bound to the number of jobs
that can simultaneously be served, from which an approxi-
mation of the maximal utilization (or the capacity loss) can
be derived with Eq. (3).

Extending the results in this section to unequal cluster
sizes is cumbersome, because then adding an unordered re-
quest to a multicluster depends on the numbers of idle rather
than used processors. So one would have to replace the WF-
convolution by a sort of convolution that depends on the
cluster sizes.

5 Simulation Methods

Unfortunately, when the job-component sizes are depen-
dent, the computation of Eq. (2) for more than four clus-
ters is very time-consuming; the same always holds for Eq.
(5), whether job-component sizes are independent or not.
In addition, we would like to validate our approximation of
the maximal utilization for unordered jobs with the FCFS
policy. Finally, in some cases, such as for non-exponential
service times and for the FF placement policy of unordered
jobs, our formulas and approximations do not apply. For
these three reasons, we resort to (two types of) simulations.

In the first type of simulations, for FCFS with synthetic
service-time distributions, we simulate the complete queue-
ing model with Poisson arrivals, and we take the utilization
in these simulations that yields an average response time of
at least �� ��� time units (the average service time is � time
unit). When simulating a queueing model close to its max-
imal utilization, it is very difficult to find out whether the
simulation is still in its transient phase, and programming
difficulties like running out of space for datastructures such
as job queues may arise. However, we have validated this
approach in turn by running simulations for single clusters
and for multiclusters with ordered requests, for which we
have the exact solution based on Eq. (3) (see Section 6).

In the second type of simulations, when the scheduling
policy is FCFS, we simulate the system in heavy traffic in
that we suppose that the queue is always long enough when
a job departs that we can schedule jobs until the next one
does not fit. As we then only generate new jobs at departure
times, and only one more than fits on the system, we don’t
encounter the difficulties mentioned above when simulat-
ing a queueing system close to its maximal utilization. Of
course, we cannot use this method with FPFS because then
we want to search the queue for jobs that fit. However, in an
adaptation for FPFS of this method, we do model Poisson
arrivals, and simulate the system for ���� ��� arrivals. We
then take the arrival rate (and so the utilization) for which
the queue length doesn’t hit either the value of � or of ����
for the largest number of arrivals.

6 The Accuracy of the Approximation and
the Simulations

In this section we assess the accuracy of the approxima-
tion of Eqs. (5) and (3) of the capacity loss for unordered
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Table 3. The capacity loss in a single cluster (C � �) of size 
� and in a multicluster with � clusters
(C � �) of size 
� for ordered, unordered, and total requests, with job-component-size distribution
U 	n�� n�
.

job comp. capacity loss
size distr. C � � C � �

ordered unordered total
n� n� exact simulation exact simulation approximation simulation exact

1 4 0.032 0.033 0.149 0.150 0.050 0.053 0.038
1 5 0.043 0.044 0.176 0.176 0.065 0.067 0.047
1 13 0.139 0.139 0.345 0.344 0.187 0.192 0.120
1 16 0.169 0.169 0.380 0.379 0.233 0.239 0.148
4 5 0.051 0.052 0.111 0.111 0.043 0.048 0.043
4 13 0.145 0.145 0.302 0.301 0.186 0.188 0.149
4 16 0.174 0.175 0.337 0.337 0.250 0.255 0.167
5 13 0.149 0.150 0.292 0.292 0.170 0.175 0.146
5 16 0.177 0.178 0.321 0.321 0.260 0.260 0.186

13 16 0.094 0.095 0.094 0.094 0.094 0.094 0.094

jobs, and of the simulation methods presented in Section
5. In this section, all clusters are of size of 
�, all job-
component sizes are non-zero and mutually independent,
the scheduling policy is FCFS, for unordered jobs the place-
ment policy is WF, and the service-time distribution is ex-
ponential.

In Tables 3 and 4 we show both exact (i.e., derived from
Eq. (2)), approximation (i.e., derived from Eq. (5)), and
simulation results for a single cluster and for multicluster
systems with ordered, unordered, and total requests for dif-
ferent distributions of the job-component sizes. The simu-
lation results for a single cluster in both tables, and those
for unordered jobs in the multicluster in Table 3, have been
obtained with simulations of type one; the remainder have
been obtained with simulations of the second type. The
exact and simulation results for the single cluster and for
the multicluster with ordered jobs agree extremely well; the
match of the approximation and simulations for unordered
jobs is quite reasonable.

As an aside, the results for multiclusters show the reduc-
tion in capacity loss when going from ordered to unordered
to total requests.

7 Results

In this section we present results for the capacity loss as
it depends on many parameters. The results in this section
for ordered and total requests when the service time is ex-
ponential and the scheduling policy is FCFS, are obtained
with the formulas of Section 4; all remaining results have
been obtained with simulations of the second type type as
described in Section 5. Unless otherwise specified, all our
results are for a multicluster system consisting of � clus-

ters of 
� processors each (or, when considering total re-
quests, for a single cluster of size ���), for independent non-
zero job-component sizes, for exponential service times, for
the FCFS policy, and for the WF placement policy for un-
ordered jobs.

7.1 The Influence of the Job-Size and
Service-Time Distribution

We consider the five distributions for the sizes of the job
components described in Table 5. Note that the first three
and the latter two have almost identical means.

distribution mean cv

U 	�� �
 ����� �����
D����� on 	�� �
 
���� �����
D������� on 	�� 
�
 
���� �����
U 	�� ��
 ����� ���
�
D������� on 	�� 
�
 ����� �����

Table 5. The means and the coefficients
of variation of the distributions of the job-
component sizes.

As expected, in Figure 3 we find that the capacity loss
decreases when going from ordered to unordered (except
for D�������, roughly speaking, the capacity loss is cut in
half), and from unordered to total requests. In addition,
when the mean, the coefficient of variation, or the maxi-
mum of the job-component-size distribution is larger (these
are not independent), the performance is poorer.

In Figure 4 we compare the performance for unordered
jobs with independent and dependent job-component sizes;
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Table 4. The capacity loss in a single cluster (C � �) of size 
� and in a multicluster with � clusters
(C � �) of size 
� for ordered, unordered, and total requests, with job-component-size distribution
D�q� on 	�� 
�
.

job comp. capacity loss
size distr. C � � C � �

ordered unordered total
q exact simulation exact simulation approximation simulation exact

0.95 0.293 0.295 0.457 0.455 0.397 0.397 0.261
0.90 0.249 0.251 0.426 0.425 0.339 0.340 0.190
0.85 0.188 0.188 0.359 0.356 0.254 0.258 0.135
0.80 0.134 0.135 0.289 0.287 0.181 0.187 0.098
0.75 0.097 0.097 0.234 0.231 0.133 0.139 0.076
0.70 0.073 0.074 0.194 0.192 0.102 0.109 0.061
0.65 0.057 0.058 0.166 0.163 0.081 0.088 0.051
0.60 0.046 0.047 0.144 0.141 0.067 0.073 0.043
0.55 0.038 0.039 0.127 0.124 0.056 0.062 0.038
0.50 0.032 0.032 0.113 0.111 0.048 0.054 0.033

0

0.1

0.2

0.3

0.4

0.5

0.6

U[1,7] D(0.9) D(0.768) U[1,14] D(0.894)

ordered
unordered
total

Figure 3. The capacity loss depending on the
job-component-size distribution.

in the latter case we first generate the total job size as the
sum of four copies of the component-size distribution, and
then spread a job across the system as explained in Section
2.5. We find that when the maximum of the basic distri-
bution used is low (U 	�� �
, D�����, and U 	�� ��
) or when
large values hardly ever occur (D�������), dependent com-
ponent sizes lead to poorer performance. The reason for this
is that then the job components are much larger than when
they are independent. When the maximum of the basic dis-
tribution is higher and larger values are more common, as is
the case for D������� on 	�� 
�
, this behaviour is reversed.
In addition, for dependent component sizes, only the mean,
and not the distribution, matters.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U[1,7] D(0.9) D(0.768) U[1,14] D(0.894)

unordered (indep)
unordered (dep)

Figure 4. The capacity loss for unordered jobs
with (in)dependent job-component sizes.

We varied the service-time distribution from determin-
istic through exponential to hyperexponential with a cv of

 up to �� (for the capacity loss, the mean is immaterial).
We found that this distribution doesn’t have a large impact
on the capacity loss. For ordered (unordered) jobs it went
from ���
� (����
) for deterministic to ����� (�����) for
hyperexponential with a cv of ��, which means about a ���
(���) increase. The job-component-size distributionhas an
impact on the widths of holes in a schedule (i.e., the number
of idle processors), while the service-time distribution has
consequences for the lengths of these holes (i.e., the time
processors are left idle). Apparently, the former is much
more important than the latter.
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7.2 The Influence of the Scheduling and Place-
ment Policies

In this section we first assess to what extent FPFS in-
creases the maximal utilization compared to FCFS, see Fig-
ure 5. We consider unordered jobs and the two service-
time distributions from Section 7.1 for which there is the
most room for improvement. We find that a small value for
MaxJumps (say �) does not improve performance by much,
but that a larger value (here ��) yields a decrease of capacity
loss over FCFS of about �� percentage points, an improve-
ment similar to that found in practice from backfilling [17].

The results of comparing the placement policies FF and
WF for unordered jobs are presented in Figure 6. The differ-
ence in performance is not very large; apparently, whereas
the explicit aim of WF is to keep balanced loads in the clus-
ters, FF achieves the same goal.

0

0.1

0.2

0.3

0.4

0.5

U[1,14] D(0.894)

FCFS
FPFS (5)
FPFS (50)

Figure 5. The capacity loss when using FCFS
or FPFS with different values for MaxJumps
for unordered jobs.

7.3 Using Data from the Logs

In Figure 7 we show the capacity loss for unordered and
total requests when using both the sizes and the service
times as they appear in the logs of the CTC (using only the
jobs of sizes at most equal to ���) and the DAS1 (see Sec-
tion 2.5). From the CTC log, we use the pairs consisting of
the sizes and service times of the jobs as they appear in the
log, while for the DAS we sample the distributions of the
sizes and the service times as they appear in the log inde-
pendently. For the total jobs, we simply use a single cluster
of size ��� and the job sizes from the logs; for unordered
requests, we split up jobs (with dependent component sizes)
as explained in Section 2.5. The capacity losses for the two
logs are similar, even though the statistics of the logs are
different (see Tables 1 and 2).

0
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0.2

0.3

0.4

0.5

U[1,7] D(0.9) D(0.768) U[1,14] D(0.894)

first fit

worst fit

Figure 6. The capacity loss depending on the
placement policy for job components for un-
ordered jobs.
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Figure 7. The capacity loss for the two logs.

7.4 Co-allocation versus no Co-allocation

In this section we discuss the benefit of co-allocation
over no co-allocation when there is a choice, that is, when
all jobs can be scheduled without co-allocation on a single
cluster. We consider a multicluster with two cases of un-
ordered jobs (and WF placement). In either case, the (total)
request sizes are obtained as the sum of � components gen-
erated from D����� on 	�� �
, but in one case, there are four
job components, while in the other, the numbers are added
to have a single job component. As the results in Figure 8
indicate, rather than waiting for enough idle processors in
one cluster, spreading requests over multiple clusters brings
better performance. However, we do point out that with co-
allocation, jobs will experience a slowdown due to wide-
area communications, which is not accounted for here.
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Figure 8. A comparison of the capacity loss
when co-allocation is or is not employed; with
co-allocation, jobs requests are unordered.

8 Conclusions

We have studied co-allocation in multicluster systems
with both analytic means and with simulations for a wide
range of parameters. We have derived an exact (for ordered
requests) and an approximate (for unordered requests) for-
mula for the maximal utilization when the service times are
exponential, and we have shown with simulations that the
latter is quite accurate. Our main conclusions are 1) that the
capacity loss of co-allocation can be quite large, but 2) that
for unordered jobs with independent job-component sizes
co-allocation may be an attractive option, even when all
jobs fit in a single cluster, and 3) that the job-size distri-
bution is more critical for the capacity loss than the service-
time distribution. We remark that while scheduling in sin-
gle clusters has received an enormous amount of attention,
hardly any work on co-allocation has been performed so far,
and that a much more detailed study is called for.
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