
Power Efficient Redundant Execution for Chip Multiprocessors
Pramod Subramanyan Virendra Singh

Abstract—This paper describes the design of a power efficient microar-
chitecture for transient fault detection in chip multiprocessors (CMPs).
Our architecture utilizes the load value queue and branch outcome queue
structures first introduced in the context of simultaneous and redundantly
threaded (SRT) processors. We show that these structures can be
combined with our algorithm for per-core dynamic voltage and frequency
scaling (DVFS) to significantly reduce dynamic power dissipation in
the redundant core. Using cycle accurate simulation combined with a
simple first order power model, we estimate that our architecture reduces
dynamic power dissipation in the redundant core by an average of 65%
and a maximum of 70% with an associated performance overhead which
is less than 5%.

I. INTRODUCTION

Increasing levels of integration, reduced supply voltages and higher
frequencies are causing soft errors to become a significant problem
for high performance microprocessors [12], [33]. One set of ap-
proaches to the soft error problem attempt to deduce the occurrence
of an error by monitoring and identifying deviations or perturbations
in program behavior [13], [14]. Another set of approaches employ
some form of redundant execution coupled with input replication and
output comparison [2], [3], [1], [5], [6], [15], [16], [7]. Architectures
like Restore [13] and Perturbation Based Fault Screening [14] are
attractive for applications that do not require comprehensive transient
fault coverage as they impose only a small overhead in terms of
performance and power. Conversely, architectures based on redundant
execution typically have a larger performance and power penalty
but usually provide higher transient fault coverage. An example of
this kind are architectures based on redundant multithreading (RMT)
which have a performance overhead that varies between 20-30% [1],
[3], [2], [24].

While RMT remains an attractive option for transient fault toler-
ance, the base assumption made in RMT designs is a simultaneously
multithreaded processor. Our work aims to provide transient fault
detection with a small performance and power penalty without the
assumption of a simultaneously multithreaded base processor. Such
an architecture might be interesting because it alleviates the need for
a wide and deep superscalar pipeline that is required for obtaining
optimal power-performance efficiency from an SMT processor [22].
SMT processors also require additional area and incur additional
circuit delays which negatively affect the clock rate [20], [21]. A
CMP with private caches would also be less affected by destructive
interference among different threads, which in some cases can negate
the benefits of SMT [23].

Our architecture designates one of the cores of a CMP as the
primary-core (P-core), and the other core as a redundant core (R-
core). Branch outcomes, load values and fingerprints are transferred
over a dedicated interconnect between the P-core and the R-core.
Transient faults are detected by comparing fingerprints. Error cor-
rection is achieved by restoring the program state to most recent
validated checkpoint. The key innovation introduced in our architec-
ture is dynamic frequency and voltage scaling based on the number
of outstanding entries in the branch outcome and load value queues.
An increasing number of outstanding entries in either one of the
queues the means that the P-core is executing instructions faster than

the R-core, therefore to avoid performance degradation due to the
P-core filling up the queues and stalling, the frequency of the R-core
is increased. On the other hand, in the common case, the number of
outstanding entries in the R-core is quite small because the R-core
never misspeculates and never accesses the data cache, obtaining all
values from the load value queue instead. In this scenario, the R-core
is made to operate at a lower frequency than the P-core reducing
dynamic power dissipation by a significant amount, but with only a
small amount of performance degradation.

The rest of this paper is structured as follows. Section II de-
scribes related work. Section III describes design and tackles some
implementation issues. Section IV evaluates the design: Section IV-A
describes our simulation methodology and Section IV-B presents the
results of our evaluation. Finally section V concludes.

II. RELATED WORK

Fault Tolerance based on RMT: Transient fault detection using
simultaneous multithreading was introduced by Rotenberg in AR-
SMT [1] and Reinhardt and Mukherjee in SRT [2]. SRT augments
SMT processors with the branch outcome queue and load value queue
structures. The branch outcome queue enhances the performance of
the redundant thread, while the load value queue provides input
replication. Muhkerjee et al. also introduced chip level redundant
threading [3], which extends SRT to simultaneously multithreaded
chip multiprocessors. Gomaa et al. studied Chip Level Redundant
Threading with Recovery (CRTR) [24], which uses the state of
the trailing thread to recover from an error. Since the primary and
redundant threads are executed on different cores in CRT and CRTR,
they reduce the amount of data transmitted over the interconnect
between cores by the method of Dead and Dependence Based
Checking Elison (DDBCE).

A number of variants on SRT processors have been proposed. An
example is Speculative Instruction Validation (SpecIV) [7] proposed
by Kumar and Aggarwal which reduces the performance overhead
of SRT by predicting the expected values of instruction results and
re-executing only those instructions whose results differ from the
expected values. By reducing the number of instructions re-executed,
SpecIV will also reduce the power overhead of the redundant thread.
However, SpecIV obtains a reduction in the number of instructions
executed at the cost of slightly reduced coverage. Moreover SpecIV
fetches and decodes all instructions even if they are not re-executed
in the redundant thread.

While schemes based on RMT are attractive as they provide
complete transient fault coverage with only small performance and
power penalty, the base assumption made in RMT designs is a
simultaneously multithreaded processor. Lee and Brooks [22] find
in their study of power-performance efficient designs that achieving
optimal power-performance for SMT processors requires wider (e.g.:
8-way) and deeper pipelines. Since many microarchitectural struc-
tures scale in a non-linear fashion with increasing issue width [21],
wider pipelines require larger area and also lead to lower clock rates
[20]. A study by Sasanka et al. [27] found that CMPs outperform
SMT architectures for multimedia workloads. Another study by Li et



al. [28] found that CPU bound workloads perform better on CMP
architectures while SMT architectures perform better on memory
bound workloads. A further problem with SMT architectures is
the destructive interference between threads that sometimes causes
performance degradation [23].

The above results indicate that an architecture that can provide
transient tolerance with performance/power overheads similar to those
of SRT or its derivatives might be appealing. Hence, our work
targets improving power-efficiency of redundant execution schemes
on CMPs using an architecture that is not based on SMT processors.
Fault Tolerance based on CMPs: Smolens et al. [4] tackled the
problem of output comparison in CMPs. In order to reduce the
amount of bandwidth required for state comparison, they introduced
the technique of fingerprinting which summarizes the execution
history and current state of a processor using a hash value. Transient
faults are detected by differences in the hash value computed by the
two cores. Smolens et al. also introduced Reunion [5] which provides
input replication in chip multiprocessors without requirement of
lockstepped execution by reusing the soft error handling mechanisms
for dealing with input incoherence. Reunion requires changes to cache
coherence controller which is a component that is difficult to design
and verify [8].
Dynamic Voltage and Frequency Scaling: Isci et al. [11] introduced
a set of policies to manage per-core voltage and power levels in.
Their policies aim to maximize performance while keeping power
dissipation under the power budget. Their policies are managed
by either a dedicated micro-controller, or a daemon running on a
dedicated core. In contrast, our design utilizes occupancy information
of the additional structures added for redundant execution to manage
the power level of the redundant core without software intervention
and very little additional hardware. Kim et al. [9] performed a
detailed design of on-chip regulators showing that it is possible to
perform voltage changes in time periods of the of the order of a
few hundred nanoseconds. Although current commercial processors
do not yet have the ability to set per-core voltage levels, the AMD
Quad Core Opteron [18] allows the frequency of each core to be set
independently.
Reducing Energy Consumption in Fault Tolerant Architectures:
Montensinos et al. [17] use register lifetime prediction to provide
ECC protection to a small subset of the physical register file. Their
approach reduces the power dissipation of the register file at the cost
of additional area for the ECC table. To the best of our knowledge,
this is the only work that attempts to decrease power consumption
in the context of transient fault detection.

III. PROPOSED DESIGN

A. Base Architecture

Our architecture designates one of the cores of the CMP as a pri-
mary core (P-core), and another core as the redundant core (R-core).
The primary and secondary core execute the same instruction stream,
with the same input data stream, but the P-core is temporally “ahead”
of the R-core, i.e., the R-core executes a particular instructions after it
has been executed by the P-core. To enable power efficient redundant
execution, we augment the core with some additional structures. A
schematic of the modified core is shown in Figure 1. If redundant
execution is disabled, then the additional structures are not used and
core operates like a normal superscalar processor. The rest of this
section describes the architecture in detail.
Components protected: Our mechanism detects errors that occur
within the fetch, decode and execution units. Errors in the register
file will also be detected as register updates are captured by the

FetchBPred BOQ

Decode

Issue Queue LSQROB

Reg File FUs D-cache LVQ

WB

Retire

Fingerprint To Interconnect

From Interconnect

Fig. 1. Schematic diagram showing core augmented with structures required
for redundant execution. Newly added structures are shaded and not used
when redundant execution is not being performed.

fingerprints. We assume that data cache, L2 cache and main memory
are protected by ECC.
Input replication: We need a mechanism to ensure that the two cores
see exactly the same input. This is addressed by using the load value
queue structure introduced by Reinhardt and Mukherjee [2]. Loads
from the P-core are transferred over the interconnect and stored in
the load value queue (LVQ) structure in the R-core. Load values
generated by instructions on wrong paths should not be transferred
over the interconnect, so values are transferred on the interconnected
only when the corresponding load instruction retires.

Load instructions executing in the R-core do not access the data
cache and instead obtain the load values from the LVQ. Note that
since the R-core never accesses the data cache, the data cache can
be completely shut down to reduce leakage power.

Although load values enter the LVQ in program order, load
instructions in the R-core may be issued out of program order. Two
solutions have been proposed to this problem: in [2] the authors
restrict load instructions to execute in program order, while in [3] load
instructions are associated with a tag generated by the primary thread
and this tag is used to select the value to be loaded from the LVQ.
Our solution is conceptually similar to the one in [3]. However, since
the P-core and R-core are spatially separated, generating tags when
the load value retires in the P-core will increase interconnect traffic.
Instead we assign tags to load values as they enter the load value
queue in the R-core. The tag is nothing but the address of the location
in the LVQ in which the value is stored. As load instructions are
decoded in the R-core, they are also assigned a tag; this tag is carried
along with the load instruction and is used when the load instruction
issued to read from the LVQ1. The above scheme works because
there is a one-to-one correspondence between load instructions as
they retire in the P-core and load instructions as they are decoded in
the R-core.2

Entries are deleted from the LVQ only when the corresponding load
instruction retires. If the LVQ becomes full, then the P-core is unable
to retire instructions. If the LVQ is empty, and a load instruction is
issued then that load is tracked in a MSHR like structure and its
value returned when the corresponding load arrives from the P-core.

Information about external interrupts also needs to be transferred
from the P-core to the R-core over the interconnect to ensure precise

1The scheme assumes that two in-flight load instructions cannot have the
same tag; this assumption is guaranteed to be valid if the size of the ROB is
less than the size of the LVQ - this is true for all the LVQ sizes considered
in this paper.

2Recall that the R-core never misspeculates in the absence of a soft error.



input replication.
Output comparison: After the execution of every N instructions the
P-core and R-core compute a hash value that summarizes updates that
have been made to the state of a processor. (N is the referred to as the
checkpointing interval). This hash value is referred to as a fingerprint
[4]. The two cores swap and compare fingerprints to detect soft errors.
If no soft error has occurred, the architectural updates will be exactly
the same, guaranteeing that the fingerprints will also be equal. If a
soft error occurs, the fingerprints are extremely likely3 to be different.
A mismatch in fingerprints indicates the presence of a soft error.

As fingerprints capture updates to the architectural state of the
processor, they have to be computed after instruction retirement. In
addition to comparing fingerprints at the end of each checkpointing
interval, fingerprints are also compared before the execution of any
I/O operation or uncached load/store operation as these may have
side-effects outside the processor.

Like in [5] we assume that fingerprints capture all register updates,
branch targets, load and store addresses and store values.

The frequency of fingerprint comparisons affects the performance
overhead of our scheme. The P-core is stalled after the computation of
the fingerprint is completed and before the corresponding fingerprint
is computed and returned from the R-core, so smaller fingerprint
comparison intervals lead to a greater performance overhead. Smolens
et al. [4] reported that for I/O intensive workloads, I/O operations
occur approximately every 50,000 instructions. Based on this result,
we conservatively assume a fingerprint comparison interval of 50,000
instructions.
Core to Core Interconnect: We assume that each processor has a
dedicated bidirectional interconnect with an adjacent processor, and
this interconnect is used for transferring the load values and branch
outcomes from the primary to the redundant core. A possible layout
for an 8-core CMP is shown in Figure 2. This interconnection strategy
implies that the choice of primary and redundant cores is restricted
to one of four pairs in the 8-core CMP. While this does decrease
scheduling flexibility, the demands on interconnect area and power
are reduced by this design.

Shared Bus

L2 L2L2 L2

core core

core core

linklink

L2 L2L2 L2

core core

core core

linklink

Fig. 2. Example Layout for an 8-core CMP

Among the pair of cores linked by the interconnect, the choice
of primary and secondary cores may be made arbitrarily if all cores
can operate at the same supply voltage/frequency. However, process
variations can have the effect of rendering some cores to be unable
to operate at the maximum voltage-frequency level [10]. In such a
situation it may be beneficial to use the lower frequency core as the
redundant core.
Branch Outcome Queue: Branch outcomes from the P-core are
forwarded to the R-core to prevent the R-core from misspeculating.

3For a p bit fingerprint based on cyclic redundancy codes (CRC), under
the assumption that all 2p bit values are equally likely, the probability that
two different sets of updates will generate the same fingerprint is bounded by
2−(p−1).

At the time of retirement, the target address of each branch instruction
is transmitted over the interconnect to the R-core. At the R-core the
branch instruction is added to the branch outcome queue (BOQ).
During instruction fetch, the R-core does not use the branch predictor,
but instead accesses the branch outcome queue to get the direction
and target address of the branch. If the branch outcome queue is
empty, then instruction fetching stalls.

B. Voltage and Frequency Control

A reduction in the frequency of operation of the R-core, does not
significantly affect performance in our architecture. To understand
why this is so, let us analyze R-core performance using the method
of interval analysis described by Eyerman et al[32].

Eyerman et al. find that performance of superscalar processors can
be analyzed by dividing time into intervals between miss events.

Time

Miss Events

Fig. 3. Interval Analysis of Superscalar Performance. Time increases along
the x-axis, and the y-axis shows the number of instructions issued.

The basis for the model is the assumption that superscalar proces-
sors are designed to smoothly stream instructions through the pipeline
at a rate that is more or less equal to the issue width in the absence
of miss events. This smooth flow instructions is interrupted by miss
events like cache misses, branch mispredictions and TLB misses. The
effect of miss events is to first stop the dispatch of useful instructions.
Next, there is a period during which no useful instructions are issued,
and finally when the miss event is resolved, the smooth flow of
instructions resumes. Figure 3 depicts this interval behavior.
Miss Events in the R-core: An important observation here is that
unlike the P-core where a variety of miss events can disrupt smooth
instruction flow, there are only a few different miss events that affect
the R-core: I-cache misses, BOQ stalls and LVQ misses. Recall that
BOQ stalls occur when the target for a branch instruction is not
available in the BOQ, and fetching is stalled until this outcome
arrives. An LVQ miss is similar event which indicates that the R-
core is attempting to obtain the value of a load instruction whose
value has not arrived over the interconnect.

The key insight here is that the resolution time of the BOQ stalls
and LVQ misses depends on when the corresponding instructions
retire in the P-core and so does not change if the frequency of the R-
core is reduced. Reducing the frequency of the R-core has the effect
of decreasing the number of instructions issued in the R-core per unit
time. This causes the length of the intervals in which useful work is
performed to increase. However, this increased interval length need
not have an adverse effect on performance if the size of the interval
does not increase beyond the resolution time of the next miss event.
This is depicted graphically in Figure 4.

Let us define the lowest possible frequency at which the R-core
can operate without any performance degradation as the optimal
frequency for the R-core.
Exploiting the Effects of Time-Varying Phase Behavior: It is well
known that programs have time-varying phase behavior [31]. This
phase behavior causes the IPC of the P-core to vary over time. A
lower IPC for the P-core has the effect of increasing the durations of
the miss events in the R-core, while a higher IPC has the opposite



Time

Fig. 4. Interval Analysis of the Effect of Reducing R-core Frequency. The
black line shows the performance of the R-core when operating at the same
frequency as the P-core. The blue line shows the performance of the R-
core when operating at a reduced frequency. Reduced frequency causes the
length of the intervals to increase, but since miss event resolution times are
unaffected, there is no effect on performance. As in the previous figure, the
x-axis is time, and y-axis is the number of instructions issued per unit time.

effect. This means that when the program is executing a phase of
low IPC, then the R-core can operate at low frequency, and during
phases of high IPC, the R-core can increase its frequency.

The question now becomes how do we identify these phases of
low/high IPC in the programs during execution. In this context we
make the observation that the sizes of the BOQ and LVQ are an
indication of the difference in execution speed between the P-core
and the R-core. To understand why, let us assume for the moment
that the R-core has infinite sized BOQ and LVQ structures. If the
R-core is operating at a lower than its the optimal frequency, then it
will not suffer any miss events due to BOQ stalls or LVQ misses (as
it much “behind” the P-core), and the number of elements in the LVQ
and BOQ will continuously increase. On the other hand, if the R-
core is operating at higher than its optimal frequency, the LVQ/BOQ
structures will mostly be empty, as the R-core will consume these
entries very quickly after they enter the structures. This suggests that
a algorithm which increases the frequency of the R-core when the
queue size increases beyond a threshold, and decreases frequency
when queue sizes fall below a threshold might be able to track IPC
variations in P-core, reducing power dissipation without adversely
affecting performance.
DVFS Algorithm: Our algorithm samples the size of the BOQ
and LVQ after a fixed time interval Ts. There are two thresholds
associated with the BOQ and LVQ - a high threshold and a low
threshold. If the occupancy of any one structure is greater than its
high theshold, then the frequency of operation is increased. If the
occupancy of one of the structures is less than the low threshold,
then the frequency of operation is decreased.

In effect the algorithm attempts to maintain the occupancy of the
structures in between the low and high thresholds. More complex
and sophisticated algorithms are possible; we leave the exploration
of these for future work.

IV. EVALUATION

A. Simulation Methodology

We use a modified version of the SESC cycle accurate simulator
[19]. Each program is simulated in two steps. The first step uses
SESC as an execution driven simulator to provide a trace of load
and branch instruction retirement events, and fingerprint generation
events from the primary core. The second step uses SESC for trace
based simulation of the redundant core. If during the simulation of the
redundant core, any of the storage structures like the branch outcome
queue or the load value queue become full, then we assume that the
primary core is completely stalled for the duration for which the
queue is full and delay all events generated by the primary core by

TABLE I
PROCESSOR AND MEMORY SYSTEM MODELED

Frequency 3 GHz
Fetch/Issue/Retire width 6/3/3

ROB size 128
I-window 64

LD/ST queue 48
Mem/Int/FP Units 2/3/2

Branch Predictor Hybrid
BTB 2k, 2-way

I-cache 32k/64B/4-way/2 cycles
D-cache 64k/64B/4-way/2 cycles

L2 512k/64B/16-way/14 cycles
Unified, Private

Memory 450 cycles
Interconnect Latency 16 cycles

Queue size sampling interval (Ts) 8.33 µs (25,000 cycles)

the duration of the stall4.
A source of inaccuracy in our trace based simulation is that it fails

to account for contention for the shared bus that connects the L2
caches to memory5.

Power estimation is carried out using a simple first order model.
It is well known that dynamic power dissipation in a CMOS circuit
[25] is given by:

P = ACV 2f (1)

Here A is the switching factor, C is the effective switching capac-
itance, V is the supply voltage and f is operating frequency. A
common assumption is that voltage scales linearly with power [11]
[9] [10].

If the execution is divided into N intervals 1, 2, 3 . . . i . . . N , each
of length ∆Ti, and interval i operates at frequency kif and voltage
kiV , where ki is the scaling factor for interval i, then the energy is
given by:

E′ =

N∑
i=1

k3
i P∆Ti (2)

If no voltage-frequency scaling were performed, then the energy E
would have been:

E =

N∑
i=1

P∆Ti (3)

An estimate of the reduction in energy is given by the ratio E′/E.

E′/E =

∑N

i=1
k3

i ∆Ti∑N

i=1
∆Ti

(4)

Our simulation tool estimates the ratio E′/E using the above
equation. Results in [11] show that the above is a fairly accurate
model for dynamic power estimation.

We are in the process of developing a detailed execution driven
simulation tool, but we believe our current methodology should
provide a reasonable estimate of the potential benefits of our proposed
architecture for this initial investigation.

4Note that this is a conservative assumption as a queue full event will only
prevent the primary core from retiring instructions; execution of instructions
can still continue. Our simulations show that the average duration of stalls
due to queue full events is only a few tens of cycles, making it quite likely
that the latency of many of these stalls can be completely hidden.

5All traffic between L2 and memory for the redundant core is due to in-
struction cache misses; our measurements showed that traffic due to instruction
cache misses was less than 10% of total traffic in all our benchmarks.



Table I lists the parameters of the simulated CMP.

B. Workload

We use three integer and three floating point benchmarks from the
SPEC CPU 2000 benchmark suite. To reduce simulation times, the
integer benchmarks mcf, parser and vpr are simulated using
MinneSPEC [29] reduced input sets. The floating point benchmarks
applu, mgrid and swim are simulated using the early SimPoints
given in [30].

C. Results

Effect of BOQ and LVQ Sizes on Performance: Figure 5 shows the
performance degradation for different BOQ and LVQ sizes. The mean
performance degradation across all workloads for a 256, 512 and
1024 entry sized queues are 2.0%, 1.6% and 1.2% respectively. It
can be seen that the integer workloads suffer greater performance
degradation as compared to the floating point workloads. The least
performance overhead is seen in the benchmark of swim of less than
0.1%. The highest performance overhead is 4.5% for vpr.

mcf parser vpr swim mgrid applu GeoMean
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

BOQ, LVQ Size = 256
BOQ, LVQ Size = 512
BOQ, LVQ Size = 1024

Fig. 5. Normalized execution time vs BOQ and LVQ sizes for different
applications The low thresholds for this experiment are all set to 16, while
the high thresholds are all set to Size/8..

Effect of BOQ and LVQ Sizes on Energy: Figure 6 shows the nor-
malized energy metric defined in equation (4). The mean normalized
energy for BOQ and LVQ sizes of 256, 512 and 1024 are 0.22, 0.21
and 0.21 respectively, showing that our scheme achieves an mean
energy reduction of almost 80%.

The highest savings are achieved in mgrid, which shows a
decrease in energy of about 85%, while the lowest savings are seen
in applu, which shows energy savings between 72-75%.
Effect of BOQ and LVQ Sizes on ED2: Figure shows the variation
of the Energy×Delay2 metric defined in [26] with different BOQ
and LVQ sizes.

These results are similar to the results for energy because the
normalized execution times (delay) are very close to 1. We observe
that the mean reduction in ED2 is 77%, 78%, and 79% for BOQ
and LVQ sizes of 256, 512 and 1024 respectively.

V. CONCLUSIONS

TODO.

mcf parser vpr swim mgrid applu GeoMean
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o
rm

a
liz

e
d
 E

n
e
rg

y

BOQ, LVQ Size = 256
BOQ, LVQ Size = 512
BOQ, LVQ Size = 1024

Fig. 6. Normalized energy vs BOQ,LVQ sizes. Low thresholds = 16, High
Thresholds = Size/8.

mcf parser vpr swim mgrid applu GeoMean
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o
rm

a
liz

e
d
 E
D

2

BOQ, LVQ Size = 256
BOQ, LVQ Size = 512
BOQ, LVQ Size = 1024

Fig. 7. Normalized ED2 vs BOQ, LVQ sizes for different benchmarks. Low
thresholds = 16, High Thresholds = Size/8.

REFERENCES

[1] Eric Rotenberg, AR-SMT: A Microarchitectural Approach to Fault
Tolerance in a Microprocessor. Proceedings of Fault-Tolerant Computing
Systems (FTCS), 1999.

[2] S. K. Reinhardt., S. S. Mukherjee, Transient Fault Detection via Simulta-
neous Multithreading. Proceedings of the 27th International Symposium
on Computer Architecture, June 2000.

[3] S. S. Mukherjee, M. Kontz and S. K. Reinhardt, Detailed Design and
Evaluation of Redundant Multithreading Alternatives. Proceedings of the
29th International Symposium of Computer Architecture, May 2002.

[4] J. C. Smolens et al. Fingerprinting: Bounding soft error detection
latency and bandwidth. Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating
Systems, Oct 2004.

[5] J. C. Smolens, Brian T. Gold, Babak Falsafi and James C. Hoe, Reunion:
Complexity-Effective Multicore Redundancy. Proceedings of the 39th
International Symposium on Microarchitecture, Dec 2006.

[6] Nidhi Aggarwal, P. Ranganathan, Norman P. Jouppi and James E. Smith
Configurable isolation: Building high availability systems with commodity
multi-core processors. Proceedings of the 34th International Symposium
on Computer Architecture, June 2007.

[7] Sumeet Kumar, A. Aggarwal, Speculative instruction validation for



performance-reliability trade-off. Proceedings of the 14th International
Symposium on High Performance Computer Architecture, Feb 2008.

[8] Nidhi Aggaral, J. E. Smith, K. K. Saluja, Normal Jouppi and P. Ran-
ganathan, Implementing High Availability Memory with a Duplication
Cache. Proceedings of the 41st International Symposium on Microarchi-
tecture, Nov 2008.

[9] Wonyoung Kim, Meeta S. Gupta, Wei Gu-Yeon and David Brooks, System
level analysis of fast, per-core DVFS using on-chip switching regulators
Proceedings of the 14th International Symposium on High Performance
Computer Architecture, Feb 2008.

[10] Radu Teodorescu and Josep Torrellas, Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors. Proceed-
ings of the 35th International Symposium on Computer Architecture, June
2008.

[11] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose
and Margaret Martonosi, An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance for a Given Power
Budget. Proceedings of the 39th Annual International Symposium on
Microarchitecture Dec 2006.

[12] P. Shivakumar, M. Kistler, S. Keckler, D. Burger and L. Alvisi, Modeling
the Effect of Technology Trends on the Soft Error Rate of Combinational
Logic. Proceedings of the International Conference on Dependable
Systems and Networks, 2002.

[13] N. Wang and S. Patel, ReStore: Symptom Based Soft Error Detection
in Microprocessors. Proceedings of the International Conference on
Dependable Systems and Networks, 2005.

[14] P. Racunas, K. Constantinides, S. Manne and S. S. Mukherjee,
Perturbation-based Fault Screening. Proceedings of the 13th International
Conference on High Performance Computer Architecture, Feb 2007.

[15] Todd Austin, DIVA: a reliable substrate for deep submicron microar-
chitecture design. Proceedings of the 32nd International Symposium on
Microarchitecture, Nov 1999.

[16] M. A. Gomaa and T. N. Vijaykumar, Opportunistic transient-fault
detection. Proceedings of the 32nd International Symposium on Computer
Architecture, June 2005.

[17] Pablo Montesinos, Wei Liu and Josep Torrellas, Using Register Lifetime
Predictions to Protect Register Files against Soft Errors. IEEE Transac-
tions on Dependable and Secure Computing, 2008.

[18] J. Dorsey et al, An integrated quad-core Opteron processor. International
Solid State Circuits Conference

[19] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K. Strauss,
S. Sarangi, P. Sack and P. Montesinos, “SESC Simulator”, January 2005.
http://sesc.sourceforge.net/.

[20] James Burns and Jean-Luc Gaudiot, Area and System Clock Effects on
SMT/CMP Processors. Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, 2001.

[21] Kunle Olukotun, Basem Nayfeh, Lance Hammond, Ken Wilson and
Kunyung Chang, The Case for a Single-Chip Multiprocessor. Proceed-
ings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct 1996.

[22] Benjamin Lee and David Brooks, Effects of Pipeline Complexity on
SMT/CMP Power-Performance Efficiency. Workshop on Complexity
Effective Design in conjunction with 32nd ISCA, June 2005.

[23] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer and S. R.
Kunkel, Characterization of simultaneous multithreading (SMT) efficiency
in POWER5. IBM Journal of Research and Development, July/Sept 2005.

[24] Mohamed Gomma, Chad Scarbrough, T. N. Vijaykumar and Irith Pomer-
anz, Transient-Fault Recovery for Chip Multiprocessors. Proceedings of
the 30th International Symposium on Computer Architecture, June 2003.

[25] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective. Addison Wesley, 2005.

[26] David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson,
Prabhakar N. Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor
Zyuban, Manish Gupta and Peter W. Cook, Power-Aware Microarchitec-
ture: Design and Modeling Challenges for Next-Generation Microproces-
sors. IEEE Micro, Dec 2000.

[27] Ruchira Sasanka, Sarita V. Adve, Yen-Kuang Chen and Eric Debes, The
energy efficiency of CMP vs. SMT for multimedia workloads. Proceedings
of the 18th annual international conference on Supercomputing. 2004.

[28] Yingmin Li, David Brooks, Zhigang Hu and Kevin Skadron, Per-
formance, Energy, and Thermal Considerations for SMT and CMP
Architectures. Proceedings of the 11th International Symposium on High-
Performance Computer Architecture Feb 2005.

[29] A. J. KleinOsowski and David J. Lilja, MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architecture Re-
search. IEEE Computer Architecture Letters, Jan 2002.

[30] Erez Perelman, Greg Hamerly and Brad Calder, Picking Statistically
Valid and Early Simulation Points. Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques, September
2003.

[31] Timothy Sherwood, Erez Perelman, Greg Hamerly and Brad Calder,
Automatically Characterizing Large Scale Program Behavior. Proceed-
ings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2002), Oct
2002.

[32] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, James E. Smith, A
Performance Counter Architecture for Computing Accurate CPI Compo-
nents. Proceedings of the 12th International Conference on Architectural
support for Programming Languages and Operating Systems, Oct 2006.

[33] Shubhendu S. Mukherjee, Joel Emer and Steven Reinhardt, The Soft
Error Problem: An Architectural Perspective. Proceedings of the 11th
International Symposium on High-Performance Computer Architecture,
Feb 2005.


