Lecture 1, MIT 6.867 (Machine Learning), Fall 2008

Michael Collins

September 3, 2008

Hand-Written Digit Recognition

- The problem: given a hand-written digit, decide whether it is $0,1,2, \ldots$ or 9
- A learning approach:

1. Collect several hundred/thousand example digits, and label them by hand to form a training set
2. Automatically learn a digit recognition model from the training set
3. Apply the model to new, previously unseen hand-written digits

- Systems built in this way are in widespread use in the U.S. postal service (ZIP-code recognition), and in automatic check-reading

Related Problems

- Identifying faces within an image (see the Viola and Jones face detector)
- Text classification/spam filtering
- Medical applications: e.g., classification of cancer type
- Information retrieval: e.g., ranking web-pages in order of relevance to a given query

Supervised Learning Problems

- Goal: Learn a function $f: \mathcal{X} \rightarrow \mathcal{Y}$
- We have n training examples

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

where each $x_{i} \in \mathcal{X}$, and each $y_{i} \in \mathcal{Y}$

- Often (not always) $\mathcal{X}=\mathbb{R}^{d}$ for some integer d
- Some possibilities for \mathcal{Y} :
- $\mathcal{Y}=\{-1,+1\}$ (binary classification)
- $\mathcal{Y}=\{1,2, \ldots, k\}$ for some $k>2$ (multi-class classification)
- $\mathcal{Y}=\mathbb{R}$ (regression)

Structure of the Course

(See the webpage for complete details.)

- Lectures: Monday/Wednesday
- Recitations times (pick one): Friday at 10am, 11am, 2pm, 3pm
- Problem sets: 5 problem sets, due roughly every 2 weeks
- Exams:
- Midterm, in class, October 15 (Wed)
- Final exam, in class, December 8 (Mon)
- Project: due date of December 4th (Thursday)

Syllabus

1. Linear models:

- Binary classification with the perceptron, support vector machines, kernel methods
- Generalization to multi-class problems, ranking problems, collaborative filtering, etc.

2. Learning theory, model selection
3. Probabilistic models for classification and regression (linear regression, logistic regression, generative models)
4. Unsupervised learning (the EM algorithm, clustering methods)
5. Structured probabilistic models (hidden Markov models, Bayesian networks, graphical models)
6. Other possible topics: boosting, active learning

Today's Lecture

- Binary classification problems
- Linear classifiers
- The perceptron algorithm

Classification Problems: An Example

- Goal: build a system that automatically determines whether an image is a human face or not
- Each image is 100×100 pixels, where each pixel takes a grey-scale value in the set $\{0,1,2, \ldots, 255\}$
- We represent an image as a point $\underline{x} \in \mathbb{R}^{d}$, where $d=100^{2}=10000$
- We have $n=50$ training examples, where each training example is an input point $\underline{x} \in \mathbb{R}^{10000}$ paired with a label y where $y=+1$ if the training example contains a face, $y=-1$ otherwise

Binary Classification Problems

- Goal: Learn a function $f: \mathbb{R}^{d} \rightarrow\{-1,+1\}$
- We have n training examples

$$
\left\{\left(\underline{x}_{1}, y_{1}\right),\left(\underline{x}_{2}, y_{2}\right), \ldots,\left(\underline{x}_{n}, y_{n}\right)\right\}
$$

- Each \underline{x}_{i} is a point in \mathbb{R}^{d}
- Each y_{i} is either +1 or -1

Supervised Learning Problems

- Goal: Learn a function $f: \mathcal{X} \rightarrow \mathcal{Y}$
- We have n training examples

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}
$$

where each $x_{i} \in \mathcal{X}$, and each $y_{i} \in \mathcal{Y}$

- Often (not always) $\mathcal{X}=\mathbb{R}^{d}$ for some integer d
- Some possibilities for \mathcal{Y} :
- $\mathcal{Y}=\{-1,+1\}$ (binary classification)
- $\mathcal{Y}=\{1,2, \ldots, k\}$ for some $k>2$ (multi-class classification)
- $\mathcal{Y}=\mathbb{R}$ (regression)

A Second Example: Spam Filtering

- Goal: build a system that predicts whether an email message is spam or not
- Training examples: $\left(\underline{x}_{i}, y_{i}\right)$ for $i=1 \ldots n$
- Each y_{i} is +1 if a message is spam, -1 otherwise.
- Each \underline{x}_{i} is a vector in \mathbb{R}^{d} representing a document

What Kind of Solution would Suffice?

- Say we have $n=50$ training examples. Each pixel can take 256 values. It's possible that some pixel, say pixel number 3, has a different value for every one of the 50 training examples
- Define $x_{t, 3}$ for $t=1 \ldots n$ to be the value of pixel 3 on the t 'th training example.
- A possible function $f\left(\underline{x}^{\prime}\right)$ learned from the training set:

$$
\begin{aligned}
& \text { For } t=1 \ldots 50 \text { : } \\
& \quad \text { If } x_{3}^{\prime}=x_{t, 3} \text { then return } y_{t} \\
& \text { Return }-1
\end{aligned}
$$

- Classifies the training examples perfectly, but does it generalize to new examples?

Model Selection

- How can we find classifiers that generalize well?
- Key point: we must constrain the set of possible functions that we entertain
- If our set of possible functions is too large, we have a risk of finding a "trivial" function that works perfectly on the training data, but does not generalize well
- If our set of possible functions is too small, we may not even be able to find a function that works well on the training data
- Later in the course we'll introduce formal (statistical) analysis relating the "size" of a set of functions to the generalization properties of a learning algorithm

Linear Classifiers through the Origin

- Model form:

$$
f(\underline{x} ; \underline{\theta})=\operatorname{sign}\left(\theta_{1} x_{1}+\ldots+\theta_{d} x_{d}\right)=\operatorname{sign}(\underline{x} \cdot \underline{\theta})
$$

- $\underline{\theta}$ is a vector of real-valued parameters
- The functions in our class are parameterized by $\underline{\theta} \in \mathbb{R}^{d}$
- $\operatorname{sign}(z)=+1$ if $z \geq 0$, and -1 otherwise

Linear Classifiers through the Origin: Geometric Intuition

- Each point \underline{x} is in \mathbb{R}^{d}
- The parameters $\underline{\theta}$ specify a hyperplane (linear separator) that separates points into -1 vs. +1
- Specifically, the hyperplane is through the origin, with the vector $\underline{\theta}$ as its normal

Linear Classifiers (General Form)

- Model form:

$$
f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{x} \cdot \underline{\theta}+\theta_{0}\right)
$$

- $\underline{\theta}$ is a vector of real-valued parameters, θ_{0} is a "bias" parameter
- The functions in our class are parameterized by $\underline{\theta} \in \mathbb{R}^{d}$ and $\theta_{0} \in \mathbb{R}$

Linear Classifiers (General Form): Geometric Intuition

- Each point \underline{x} is in \mathbb{R}^{d}
- The parameters $\underline{\theta}, \theta_{0}$ specify a hyperplane (linear separator) that separates points into -1 vs. +1
- Specifically, the hyperplane has the vector $\underline{\theta}$ as its normal, and is at a distance $\theta_{0} /\|\underline{\theta}\|$ from the origin, where $\|\underline{\theta}\|$ is the norm (length) of $\underline{\theta}$.

A Learning Algorithm: The Perceptron

- We've chosen a function class (the class of linear separators through the origin)
- The estimation problem: choose a specific function in this class (i.e., a setting for the parameters $\underline{\theta}$) on the basis of the training set
- One suggestion: find a value for $\underline{\theta}$ that minimizes the number of training errors

$$
\hat{E}(\underline{\theta})=\frac{1}{n} \sum_{t=1}^{n}\left(1-\delta\left(y_{t}, f\left(\underline{x}_{t} ; \underline{\theta}\right)\right)\right)=\frac{1}{n} \sum_{t=1}^{n} \operatorname{Loss}\left(y_{t}, f\left(\underline{x}_{t} ; \underline{\theta}\right)\right)
$$

where $\delta\left(y, y^{\prime}\right)$ is 1 if $y=y^{\prime}, 0$ otherwise

- Other definitions of Loss are possible

The Perceptron Algorithm

- Initialization: $\underline{\theta}=\underline{0}$ (i.e., all parameters are set to 0)
- Repeat until convergence:
- For $t=1 \ldots n$

1. $y^{\prime}=\operatorname{sign}\left(\underline{x}_{t} \cdot \underline{\theta}\right)$
2. If $y^{\prime} \neq y_{t}$ Then $\underline{\theta}=\underline{\theta}+y_{t} \underline{x}_{t}$, Else leave $\underline{\theta}$ unchanged

- "Convergence" occurs when the parameter vector $\underline{\theta}$ remains unchanged for an entire pass over the training set. At that point, all training examples are classified correctly

More about the Perceptron

- Analysis: if there exists a parameter setting $\underline{\theta}$ that correctly classifies all training examples, the algorithm will converge. Otherwise, the algorithm will not converge.
- Intuition: Suppose we make a mistake on \underline{x}_{t}. We then do the update $\underline{\theta}^{\prime}=\underline{\theta}+y_{t} \underline{x}_{t}$. From this:

$$
\begin{aligned}
y_{t}\left(\theta^{\prime} \cdot \underline{x}_{t}\right) & =y_{t}\left(\underline{\theta}+y_{t} \underline{x}_{t}\right) \cdot \underline{x}_{t} \\
& =y_{t}\left(\underline{\theta} \cdot \underline{x}_{t}\right)+y_{t}^{2}\left(\underline{x}_{t} \cdot \underline{x}_{t}\right) \\
& =y_{t}\left(\underline{\theta} \cdot \underline{x}_{t}\right)+\left\|\underline{x}_{t}\right\|^{2}
\end{aligned}
$$

- Hence $y_{t}\left(\theta \cdot \underline{x}_{t}\right)$ increases by $\left\|\underline{x}_{t}\right\|^{2}$

The Perceptron Convergence Theorem

- Assume their exists some parameter vector $\underline{\theta}^{*}$, and some $\gamma>0$ such that for all $t=1 \ldots n$,

$$
y_{t}\left(\underline{x}_{t} \cdot \underline{\theta}^{*}\right) \geq \gamma
$$

- Assume in addition that for all $t=1 \ldots n,\left\|\underline{x}_{t}\right\| \leq R$
- Then the perceptron algorithm makes at most

$$
\frac{R^{2}\left\|\underline{\theta}^{*}\right\|^{2}}{\gamma^{2}}
$$

updates before convergence

A Geometric Interpretation

- Assume their exists some parameter vector $\underline{\theta}^{*}$, and some $\gamma>0$ such that for all $t=1 \ldots n$,

$$
y_{t}\left(\underline{x}_{t} \cdot \underline{\theta}^{*}\right) \geq \gamma
$$

- The ratio $\gamma /\left\|\underline{\theta}^{*}\right\|$ is the smallest distance of any point \underline{x}_{t} to the hyperplane defined by $\underline{\theta}^{*}$

