
Lecture 1, MIT 6.867 (Machine Learning),

Fall 2008

Michael Collins

September 3, 2008

Hand-Written Digit Recognition

◮ The problem: given a hand-written digit, decide whether it is
0, 1, 2, . . . or 9

◮ A learning approach:

1. Collect several hundred/thousand example digits, and label
them by hand to form a training set

2. Automatically learn a digit recognition model from the
training set

3. Apply the model to new, previously unseen hand-written digits

◮ Systems built in this way are in widespread use in the U.S.
postal service (ZIP-code recognition), and in automatic
check-reading

Related Problems

◮ Identifying faces within an image
(see the Viola and Jones face detector)

◮ Text classification/spam filtering

◮ Medical applications: e.g., classification of cancer type

◮ Information retrieval: e.g., ranking web-pages in order of
relevance to a given query

Supervised Learning Problems

◮ Goal: Learn a function f : X → Y

◮ We have n training examples

{(x1, y1), (x2, y2), . . . , (xn, yn)}

where each xi ∈ X , and each yi ∈ Y

◮ Often (not always) X = R
d for some integer d

◮ Some possibilities for Y :

◮ Y = {−1,+1} (binary classification)
◮ Y = {1, 2, . . . , k} for some k > 2 (multi-class classification)
◮ Y = R (regression)

Structure of the Course

(See the webpage for complete details.)

◮ Lectures: Monday/Wednesday

◮ Recitations times (pick one): Friday at 10am, 11am, 2pm,
3pm

◮ Problem sets: 5 problem sets, due roughly every 2 weeks

◮ Exams:

◮ Midterm, in class, October 15 (Wed)
◮ Final exam, in class, December 8 (Mon)

◮ Project: due date of December 4th (Thursday)

Syllabus

1. Linear models:

◮ Binary classification with the perceptron, support vector
machines, kernel methods

◮ Generalization to multi-class problems, ranking problems,
collaborative filtering, etc.

2. Learning theory, model selection

3. Probabilistic models for classification and regression (linear
regression, logistic regression, generative models)

4. Unsupervised learning (the EM algorithm, clustering methods)

5. Structured probabilistic models (hidden Markov models,
Bayesian networks, graphical models)

6. Other possible topics: boosting, active learning

Today’s Lecture

◮ Binary classification problems

◮ Linear classifiers

◮ The perceptron algorithm

Classification Problems: An Example

◮ Goal: build a system that automatically determines whether
an image is a human face or not

◮ Each image is 100 × 100 pixels, where each pixel takes a
grey-scale value in the set {0, 1, 2, . . . , 255}

◮ We represent an image as a point x ∈ R
d, where

d = 1002 = 10000

◮ We have n = 50 training examples, where each training
example is an input point x ∈ R

10000 paired with a label y
where y = +1 if the training example contains a face, y = −1
otherwise

Binary Classification Problems

◮ Goal: Learn a function f : R
d → {−1, +1}

◮ We have n training examples

{(x
1
, y1), (x2

, y2), . . . , (xn, yn)}

◮ Each xi is a point in R
d

◮ Each yi is either +1 or −1

Supervised Learning Problems

◮ Goal: Learn a function f : X → Y

◮ We have n training examples

{(x1, y1), (x2, y2), . . . , (xn, yn)}

where each xi ∈ X , and each yi ∈ Y

◮ Often (not always) X = R
d for some integer d

◮ Some possibilities for Y :

◮ Y = {−1,+1} (binary classification)
◮ Y = {1, 2, . . . , k} for some k > 2 (multi-class classification)
◮ Y = R (regression)

A Second Example: Spam Filtering

◮ Goal: build a system that predicts whether an email message
is spam or not

◮ Training examples: (xi, yi) for i = 1 . . . n

◮ Each yi is +1 if a message is spam, −1 otherwise.

◮ Each xi is a vector in R
d representing a document

What Kind of Solution would Suffice?

◮ Say we have n = 50 training examples. Each pixel can take
256 values. It’s possible that some pixel, say pixel number 3,
has a different value for every one of the 50 training examples

◮ Define xt,3 for t = 1 . . . n to be the value of pixel 3 on the t’th
training example.

◮ A possible function f(x′) learned from the training set:

For t = 1 . . . 50:
If x′

3
= xt,3 then return yt

Return −1

◮ Classifies the training examples perfectly, but does it

generalize to new examples?

Model Selection

◮ How can we find classifiers that generalize well?

◮ Key point: we must constrain the set of possible functions
that we entertain

◮ If our set of possible functions is too large, we have a risk of
finding a “trivial” function that works perfectly on the training
data, but does not generalize well

◮ If our set of possible functions is too small, we may not even
be able to find a function that works well on the training data

◮ Later in the course we’ll introduce formal (statistical) analysis
relating the “size” of a set of functions to the generalization
properties of a learning algorithm

Linear Classifiers through the Origin

◮ Model form:

f(x; θ) = sign(θ1x1 + . . . + θdxd) = sign(x · θ)

◮ θ is a vector of real-valued parameters

◮ The functions in our class are parameterized by θ ∈ R
d

◮ sign(z) = +1 if z ≥ 0, and −1 otherwise

Linear Classifiers through the Origin:

Geometric Intuition

◮ Each point x is in R
d

◮ The parameters θ specify a hyperplane (linear separator) that
separates points into −1 vs. +1

◮ Specifically, the hyperplane is through the origin, with the
vector θ as its normal

Linear Classifiers (General Form)

◮ Model form:
f(x; θ, θ0) = sign(x · θ + θ0)

◮ θ is a vector of real-valued parameters, θ0 is a “bias”
parameter

◮ The functions in our class are parameterized by θ ∈ R
d and

θ0 ∈ R

Linear Classifiers (General Form): Geometric

Intuition

◮ Each point x is in R
d

◮ The parameters θ, θ0 specify a hyperplane (linear separator)
that separates points into −1 vs. +1

◮ Specifically, the hyperplane has the vector θ as its normal, and
is at a distance θ0/||θ|| from the origin, where ||θ|| is the norm
(length) of θ.

A Learning Algorithm: The Perceptron

◮ We’ve chosen a function class (the class of linear separators
through the origin)

◮ The estimation problem: choose a specific function in this
class (i.e., a setting for the parameters θ) on the basis of the
training set

◮ One suggestion: find a value for θ that minimizes the number
of training errors

Ê(θ) =
1

n

n∑

t=1

(1 − δ(yt, f(xt; θ))) =
1

n

n∑

t=1

Loss(yt, f(xt; θ))

where δ(y, y′) is 1 if y = y′, 0 otherwise

◮ Other definitions of Loss are possible

The Perceptron Algorithm

◮ Initialization: θ = 0 (i.e., all parameters are set to 0)

◮ Repeat until convergence:

◮ For t = 1 . . . n

1. y′ = sign(x
t
· θ)

2. If y′ 6= yt Then θ = θ + ytxt
, Else leave θ unchanged

◮ “Convergence” occurs when the parameter vector θ remains
unchanged for an entire pass over the training set. At that
point, all training examples are classified correctly

More about the Perceptron

◮ Analysis: if there exists a parameter setting θ that correctly
classifies all training examples, the algorithm will converge.
Otherwise, the algorithm will not converge.

◮ Intuition: Suppose we make a mistake on xt. We then do the
update θ′ = θ + ytxt. From this:

yt(θ
′ · xt) = yt(θ + ytxt) · xt

= yt(θ · xt) + y2

t (xt · xt)

= yt(θ · xt) + ||xt||
2

◮ Hence yt(θ · xt) increases by ||xt||
2

The Perceptron Convergence Theorem

◮ Assume their exists some parameter vector θ∗, and some
γ > 0 such that for all t = 1 . . . n,

yt(xt · θ
∗) ≥ γ

◮ Assume in addition that for all t = 1 . . . n, ||xt|| ≤ R

◮ Then the perceptron algorithm makes at most

R2||θ∗||2

γ2

updates before convergence

A Geometric Interpretation

◮ Assume their exists some parameter vector θ∗, and some
γ > 0 such that for all t = 1 . . . n,

yt(xt · θ
∗) ≥ γ

◮ The ratio γ/||θ∗|| is the smallest distance of any point xt to
the hyperplane defined by θ∗

