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RISK AND UNCERTAINTY

1. Intro

We now return to choice theory to analyze decisions under risk and uncertainty. In case you were
wondering, the basic distinction between these two concepts was proposed by Frank Knight in 1921.
Decisions under risk correspond to choice situations in which “probabilities are given”; for instance,
games of chance. Decisions under unertainty are instead situations in which “the decision-maker
must figure out what the probabilities are” [the quotation marks do not indicate actual quotes,
just informal expressions!] Now, this is not very satisfactory, for two reasons. First, despite this
distinction, 99.9% of “information economics” is carried out pretty much as if probabilities were
always an objective element of the model, just like technology or commodities. This is often
harmless, but sometimes (especially in multi-person situations, e.g. in game theory) it implies
unwarranted (and perhaps undesired) restrictions.

Second, do we really know what probabilities are? You should at least be aware of the existence
of three different interpretations. The first really has to do with games of chance, it is historically
important, but it is basically self-referential and therefore not very useful: it maintains that “the
probability of an event equals the number of realizations (of some experiment) consistent with it,
divided by the total number of possible realizations”. This implies that each realization is “equally
likely”—a concept that itself refers to a notion of probability.

The second interpretation is called frequentist. It maintains that the probability of an event is
the limit of its relative frequency in a sequence of repetitions of a suitable experiment (e.g. tossing a
coin, measuring some physical quantity, etc.) This is much better, because it is not self-referential.
However, it is basically useless for the purposes of economic theory; we can (almost) never exactly
replicate a choice experiment (such as purchasing shares of a given asset at a certain date).

This leaves us with the third interpretation, called Bayesian or subjectivist. The basic idea is
that probability is a mathematical representation of an individual’s subjective beliefs, as they man-
ifest themselves in actual choice behavior. More precisely: just like utility is not meaningful per
se, but merely represents preferences, it is possible to consider a carefully constructed choice situa-
tion—typically, bets—that can reasonably be interpreted as “eliciting” the decision-maker’s beliefs;
it can then be shown that, under suitable assumptions, this choice behavior can be represented (in
an appropriate sense) by a probability measure.

We won’t spend much time on these issues (but we will point out how a relatively satisfactory
theory of subjective probability can be constructed on the basis of our results). Rather, we shall
focus on more “practical” matters:

Acknowlegement. My lecture notes for this course draw from a variety of sources, including MWG, David
Kreps’s “A Course in Microeconomic Theory”, Eddie Dekel’s own lecture notes for the Fall 2002 edition of 410-1,
and, where appropriate, journal articles and papers. The latter are explicitly referenced in the text. However, I claim
full ownership of any errors you may find in these notes... if you find one, please let me know!
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2 RISK AND UNCERTAINTY

• How do we represent choice under risk and uncertainty?
Keywords: Lotteries, State space, acts.

• How should people behave in such situations?
Keywords: von Neumann-Morgenstern Theorem, Expected Utility.

• What kind of interesting economic phenomena can we describe?
Keywords: Risk Aversion, Portfolio Choice, Insurance...

• Do people really behave as we hope they do?
Keywords: Allais Paradox, Ellsberg Paradox.

2. Frameworks for Risk and Uncertainty

There are economies of scale in describing the two frameworks we are interested in before actually
analyzing choice. This allows us to highlight a common component: both feature preferences over
a convex subset of a vector space. In the next section, we will use essentially the same result, the
von Neumann-Morgenstern theorem, to provide a characterization of such preferences.

2.1. Choice under risk: Lotteries. Let us go back to the Knightian distinction, and consider
choice under risk first.

We consider the following setup. There is a set X of prizes, which could be anything: money,
goods, commodity bundles, intertemporal consumption plans... In particular, X could be finite or
infinite. The objects of choice are lotteries over the set X; formally, a lottery is just an X-valued
random variable. [In your basic statistics class, you encountered real-valued random variables;
but, there is no reason not to contemplate r.v.’s that, for example, yield different consumption
bundles with different probabilities.] Actually, in applications, it is often convenient to consider
continuous lotteries—er, random variables (think of the value of a portfolio, under the assumption
that returns are normally distributed). However, for the purposes of axiomatic treatment, it is
sufficient to focus on finite-valued lotteries. Hence, we can equivalently say that a (finite) lottery
is a probability distribution over X, with finite support. We write p = (x1, p1; . . . ;xn, pn) to denote
the generic lottery that yields prize xi with probability pi, and L(X) to denote the set of (finite)
lotteries over X. We are interested in studying a preference relation < over L(X).

An important feature of the latter set is that it convex. More precisely, if X is a finite set of
cardinality, say, n, we can simply identify L(X) with the set

Σ =

{
(p1, . . . , pn) ∈ Rn

+ :
∑

i

pi = 1

}
,

known as the unit simplex in Rn. This set is clearly convex with respect to the usual vector space
operations.

If X is not finite, we can proceed as follows. First, let M(X) = RX , i.e. the set of all functions from X to R.
Notice that this is a vector space under the usual pointwise sum and scalar multiplication operations: that is, if
f, g ∈ M(X), then the function f + g defined by (f + g)(x) = f(x) + g(x) is also a function from X to R, and so is
the function αf given by (αf)(x) = αf(x), for all α ∈ R.

Second, note that any p ∈ L(X) can be viewed as a point in M(X). Write p = (x1, p1; . . . ; xn, pn); in particular,
we can associate p with the function fp : X → R such that

∀x ∈ X, fp(x) =
X

i:xi=x

pi.
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Notice that this allows for the case of n distinct prizes x1, . . . , xn, as well as for the possibility that some prizes may be
repeated more than once; furthermore, note that if some x ∈ X is not a prize delivered by p (or if the corresponding
pi is zero), then fp(x) = 0.

With this stipulation, every p ∈ L(X) maps to some fp ∈M(X) that (i) takes non-zero value only for finitely many
x′s, (ii) is non-negative, and (iii) satisfies

P
x fp(x) = 1; conversely, it is clear that every f ∈ M(X) that satisfies

properties (i), (ii) and (iii) uniquely defines a lottery pf ∈ L(X). Furthermore, you should convince yourselves that
the subset of M(X) of functions that satisfy (i), (ii), (iii) is convex. We have achieved the desired identification:
L(X) can be viewed as a convex subset of a vector space.

[In the literature, you will encounter the expression mixture space to indicate a set with an abstract “convex
combination operation” that has all the algebraic properties of “regular” convex combinations. For instance, you
will find statements such as “the set of lotteries is a mixture space”. Thus, a convex subset of a vector space is
automatically a mixture space, but, in principle, the converse may not be true. However, in practice, the objects we
are interested in are really convex subsets of a vector space, so there will always be a “honest” convex combination
operation to consider. And furthermore,, it turns out that even the alleged generality of “abstract” mixture spaces is
only fictitious: every mixture space can be viewed as a convex subset of a vector space, provided suitable vector-space
operations are defined.]

2.2. Choice under Uncertainty: Acts. Turn now to choice under uncertainty. Here, the basic
idea is that we do not “know what the probabilities are”. However, we are able to identify the
following elements of the choice problem at hand:

• A set of states, i.e. elementary events or basic (“atomic”) realizations of the underlying
uncertainty; denote the set of states by S.

• A set of prizes, as above, denoted X;
• A collection of acts, i.e. functions from S to X.

You should think of states exactly as elementary events in probability theory, if you are familiar
with that. If we are interested in rolling a dice, the possible states are S = {1, . . . , 6}, corresponding
to the outcome of the dice roll. But states need not be numerical quantities; an example will be
provided momentarily.

Acts are the basic object of choice. The idea is that, in a concrete choice problem, the decision-
maker (DM) will be able to in principle take a variety of “actions”; however, we are not interested
in the actual, physical description of such actions; rather, we content ourselves with a description of
how actions associate prizes (i.e. ultimate outcomes) to the possible realizations of the underlying
uncertainty. Hence, we identify physical “actions”

This conceptualization is largely due to Leonard J. Savage, who is considered one of the founding
fathers of decision theory, as well as of the subjectivist approach to probability and statistics. He
also provided a really cute example of his framework. Suppose you are preparing dinner; you are
making an omelette, and you have already used one egg. There is a second egg in you refrigerator,
and you are considering whether or not to add it to the omelette. The problem is that you don’t
rememember how long the egg has been sitting in your fridge. Now, if the egg is still fresh and
you use it, you get a large omelette (which is supposedly good for you, disregarding other health
considerations...); if it is rotten and you use it, you spoil the omelette and have nothing to eat for
dinner; and if you choose not to use it, you have to settle for a smaller omelette.

In the Savage framework, this situation can be described as follows. First, let S = {sr, sf}, where
sr stands for rotten and sf for fresh; next, let X = {0, 1, 2}, corresponding to no omelette, a 1-egg
omelette, or a 2-egg omelette; finally, the acts we are considering are f and g, where f corresponds
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to adding the extra egg and is defined by

f(sr) = 0, f(sf ) = 2

and g corresponds to not adding the extra egg, so

g(sr) = g(sf ) = 1.

Preferences < are defined over the set of relevant acts. Now, in the framework as described
so far, Savage was able to provide axioms that lead to the intended characterization of subjective
expected utility [see below for details]. However, this result requires a lengthy and tedious proof;
furthermore, there are certain unpleasant elements about the setting he considers, such as the
absolute necessity of assumptions that imply that the state space S be uncountably infinite.

F. Anscombe and R. Aumann provided a “shortcut”, which we are also going to follow. The
basic idea is to allow acts to associate lotteries over prizes to states, instead of just prizes. The
big advantage is that this turns the set of acts into (you guessed it!) a convex subset of a vector
space. To see this, recall that L(X) is itself a convex subset of a vector space; for any two acts f, g
mapping X to L(X), we can then define the “convex-combination act” αf + (1 − α)g as follows:
for every state s ∈ S, let

[αf + (1− α)g)](s) = αf(s) + (1− α)g(s).

Since f(s), g(s) ∈ L(X) and we already know that convex combinations of lotteries are well-defined,
the above is a well-posed definition.

A little more formally, we can view the set of all “Anscombe-Aumann acts” as a convex subset of the space
[M(X)]S , consisting of functions from S to the set of functions from X to R (which we denoted M(X) above). If
S is finite, this is just a finite Cartesian product of M(X); otherwise, we typically need to introduce measurability
and other technical restrictions, but there is no conceptual difference. The key point is that we are still considering
objects in some convex subset of a linear space.

As we will see, this allows us to provide a quick proof of the expected-utility theorem, essentially
as a further corollary to the von Neumann-Morgenstern theorem, and without any assumption
about S. However, you should be warned that this does have a cost in terms of the interpretation
of the model. Specifically, we need to assume that lotteries exist and are perceived as “objective”.
This is OK if all we are interested is a characterization of “rational” choice under uncertainty;
however, if we wish to invoke this result to provide a foundation for the subjective approach to
probability (which, after all, was Savage’s original goal), this is not good. We use a mathematical
argument to construct subjective probabilities, but, in order to do so, we need to assume the
existence of objective probabilities in lotteries; the question is, where do these come from? [It
turns out that there are ways around this; in particular, as you will see, there is nothing in the
von Neumann-Morgenstern theorem that requires probabilities—the only necessary feature of the
model is convexity. If you can guarantee that the set of objects of choice is convex with respect to a
suitable operation, you can still use that theorem, and everything goes through. And, it turns out
that you can construct suitable convex combinations in an entirely subjective way. So, everything
is fine in the end.]

3. Expected Utility and the Von Neumann- Morgenstern Theorem

How should people choose among lotteries, or acts? Let’s talk about lotteries first. One obvious
criterion, at least if prizes are monetary, is expected value maximization: when faced with a choice
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of lotteries, pick the one that yields the maxmimum expected monetary prize. But, while this
criterion seems plausible, it does not capture “risk aversion”.

The classical example, due to J. Bernoulli, is the St. Petersburg Paradox. Suppose you are
offered the following bet: a coin is flipped, and if Head obtains, you get 1 dollar. Otherwise, it is
flipped again, and if Head obtains, you get 2 dollars. In general, we keep flipping the coin until
Head obtains; if this happens on the n-th coin flip, you get 2n dollars. How much would you be
willing to pay for the privilege of participating in this bet?

If you rank lotteries according to the expected value criterion, you should be willing to pay an
infinite entry fee, because the expected value of this bet is

1
1
2

+ 2
1
4

+ 4
1
8

+ . . . =
1
2
(1 + 1 + . . .) = ∞.

Formally, this lottery can be written as p = (1, 1
2 ; 2, 1

4 ; 4, 1
8 ; . . .). While this is not finite, the

main point goes through if there is a pre-specified maximum number of coin flips, say N , and we
stipulate that if N tails obtain, you get nothing. If N is large, this does not change the substance
of the argument: you should be willing to pay an extremely large (if not infinite) entry fee.

The idea of expected utility was introduced precisely to avoid such difficulties. Suppose you
value each successive dollar less, so your valuation for sums of money is concave. Then you can
justify the “normal” response to the St. Petersburg Paradox. For instance, suppose that the value,
or “utility”, of x dollars for you is u(x) ≡ log2 x [whatever this means]. Suppose further that the
value of a lottery (x1, p1; . . . xn, pn) for you is its “expected utility”

U(p) ≡
n∑

i=1

piu(xi) =
n∑

i=1

pi log2 xi.

Then you should see that the amount you would be willing to pay for this bet is finite (and
small).

Now, this is all well and good, and may remind you of our development of utility in Chapter 1
of MWG. But you will also remember that our mantra then was: utility is just a representation
of preferences, so you should ask whether this notion of “utility” can be viewed as representing
preferences, under suitable assumptions.

You will also remember that, in the context of choice under certainty, utility differences, and
hence the concavity or convexity of a particular representation of preferences, do not matter. So,
why is it that they matter here?

The latter question has a simple, but not very informative answer. It is true that, if some
function ϕ represents preferences over some abstract set of choices X , then so does any increasing
transformation ψ(ϕ) of ϕ. Here, for instance, if U as defined above represents the DM’s prefs, so
does U2(p) = (

∑
i pi log2 xi)

2. What is not true is that you can replace log2 x with some increasing
transformation—think of replacing log2 x with 2log2 x = x, for instance.

Thus, the confusion is mainly terminological: in Chapter 1 of MWG, we called utility any
representation function ϕ over a set of alternatives X ; here, on the other hand, “utility” is the little-
u, whereas big-U is called “expected utility”. We cannot take arbitrary increasing transformations
of little-u, even though we still can do whatever we want to big-U .

In fact, in order to emphasize this aspect of little-u, the “official” convention is to call U(·) the
expected utility functional and u(·) the von Neumann-Morgenstern utility function, or
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vNM utility. MWG uses the expression Bernoulli Utility to denote u, which is just as good. I
tend to use vNM utility, but you can take your pick.

Still, this answer is not complete. Where do we get all these properties of big-U and little-u—er,
vNM utility—from? We need to turn to axiomatics. However, let us first encode the notion of
expected-utility representation in two definitions—one for risk, and one for uncertainty.

Definition 1. A relation < on L(X) is an expected-utility preference, with von Neumann-
Morgenstern utility u : X → R, iff, for all p = (x1, p1; . . . , xn, pn), q = (y1, q1; . . . ; ym, qm) ∈
L(X), p < q iff

∑
i piu(xi) ≥

∑
i qiu(yi).

Before we state the corresponding definition for uncertainty, one technical bit must be clarified.
This is only an issue when the state space is infinite, so if you content yourself with EU on finite
state spaces, just skip the next couple of paragraphs and disregard any mention of “algebra” and
“measurability” in Definition 2 below.

An algebra of subsets of S is a collection of subsets of S that is closed under complements and finite unions,
and also contains S. A σ-algebra is an algebra that is also closed under countable unions. Given a σ-algebra S, a
probability measure is a set function P : S → [0, 1] such that, for A1, A2, . . . ∈ S such that Ai ∩ Aj = ∅ for all i 6= j,
P (

S
i Ai) =

P
i P (Ai): that is, P is a countably additive set function. In the current setting, without additional

assumptions, the “standard” axiomatizations of subjective EU only deliver a finitely additive probability, or probability
charge: a set function P defined on an algebra A of subsets of of S, and such that P (A∪B) = P (A)+P (B) whenever
A, B ∈ A and A∩B = ∅. On the other hand, it should be noticed that charges can be defined on the (sigma-) algebra
2S , which is (roughly speaking) generally not possible if one insists on preserving countable additivity.

It turns out that one can define integrals for both probability measures and charges (with countable additivity,
the relevant notion is the standard one of Lebesgue integration, of course). In both cases, for simple functions, i.e.
linear combinations of indicator functions, the integral does what it should: if a =

Pn
i=1 1Eiai, where E1, . . . , En

is a measurable partition of S and ai ∈ R, then
R

adP =
Pn

i=1 aiP (Ei). For simplicity, we restrict attention to
“simple acts”, i.e. acts that yield finitely many non-indifferent prizes. As for the case of lotteries, the theory has a
(straightforward and unique) extension to more general acts.

Definition 2. Fix an algebra A on S. A relation < on A–measurable simple acts from states
S to prizes X is an expected-utility preference, with von Neumann-Morgenstern utility
u : X → R and probability charge P : A → R, iff, for all A-measurable simple acts f, g, f < g
iff

∫
u(f(s))dP ≥

∫
u(g(s))dP .

3.1. Axioms and vNM Theorem for Lotteries. Let us consider preference over lotteries first.
The following axioms turn out to be necessary and sufficient for the existence of an EU represen-
tation.

Axiom 1 (Weak Order). < is complete and transitive.

Axiom 2 (Continuity). For all p, q, r ∈ L(X) such that p � q � r, there exist α, β ∈ (0, 1) such
that αp+ (1− α)r � q and q � βp+ (1− β)r.

Weak Order is standard (i.e. we cannot say anything more about it than we did when we talked
about abstract choice theory). Continuity is essentially technical: it states that, when taking convex
combinations of lotteries, there are no holes or jumps in preferences. This can plausibly fail if e.g.
r is an exceedingly “bad” lottery (e.g. “you get shot with probability one”). But otherwise it is a
reasonable continuity assumption.

Here is the big one:
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Axiom 3 (Independence). For all p, q, r ∈ L(X), and all α ∈ (0, 1): if p � q, then αp+(1−α)r �
αq + (1− α)r.

I won’t be able to summarize the on-going debate on this central axiom, but here’s the gist
of the argument. Suppose that we can interpret the convex combinations αp + (1 − α)r and
αq + (1− α)r as “two-stage lotteries”: first, some random device determines which of the lotteries
p or r (respectively q and r) is selected; then, the lottery selected in the first stage is played out.
Under this interpretation, Independence says that preferences over two-stage lotteries should not be
reversed due to the presence of the “irrelevant alternative” r [which is irrelevant in the sense that it
is the same for both two-stage lotteries]. This makes sense. However, the fact is that αp+(1−α)r
and αq + (1− α)r are not really two-stage lotteries: they are more boring convex combinations of
lotteries—i.e. they are one-stage objects. Thus, either we think of a different interpretation (it’s
not easy), or we just assume that the DM reduces two-stage lotteries to convex combinations. This
is a rather heroic assumptions, and it is fairly easy to produce violations: the Allais paradox does
just that.

Be that as it may, here’s the main result.

Theorem 1. A preference < on L(X) satisfies Weak Order, Continuity and Independence if and
only if there exists a function U : L(X) → R such that, for all p, q ∈ L(X),

(i) p < q iff U(p) ≥ U(q); and
(ii) for all α ∈ (0, 1), U(αp+ (1− α)q = αU(p) + (1− α)U(q).

Furthermore, if a function V : L(X) → R satisfies (i) and (ii) above, then there exist α, β ∈ R with
α > 0 such that, for all p ∈ L(X), V (p) = αU(p) + β.

The last statement of the theorem (“Furthermore...”) is a uniqueness claim: it asserts that every
function satisfying (i) and (ii) is “the same” as U , up to a positive affine transformation. Often,
this is abbreviated by saying that U is “cardinally unique”.

Notice that the function U in the above theorem (also known as the von Neumann-Morgenstern
or expected-utility functional is a representation of <, not a vNM utility function. So, where’s vNM
utility? You get it immediately from property (ii) and the structure of lotteries:

Corollary 1. Consider a function U : L(X) → R that satisfies (ii) in Theorem 1. Define a function
u : X → R by letting u(x) = U((x, 1)) for all x ∈ X. Then, for all p = (x1, p1; . . . ;xn, pn) ∈ L(X),
U(p) =

∑n
i=1 piu(xi).

The proof is straightforward, so I’ll leave it to you [hint: argue by induction, noting that p =
(x1, p1; . . . ;xn, pn) can be written as p1(x1, 1) + (1 − p1)q, where q = (x2,

p2

1−p1
; . . . ;xn,

pn

1−pn
).].

Clearly, since U is unique up to positive affine transformations, so is u. This clarifies the above
discussion about not allowing arbitrary increasing transformations of u: if we consider anything
other than a positive affine transformation, we are changing the underlying preferences.

The reason for this roundabout statement of the vNM theorem for lotteries will be clear momen-
tarily. For now, let’s turn to the

Proof. First of all, note that the Theorem is trivially true (including the “uniqueness” claim) if
p ∼ q for all p, q ∈ L(X). Thus, assume there exist p∗, p∗ ∈ L(X) with p∗ � p∗.

We argue in a sequence of steps.

Step 1. p � q and 1 ≥ α > β ≥ 0 imply αp+ (1− α)q � βp+ (1− β)q.
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This is almost immediate, once you notice that βp+ (1− β)q = γ[αp+ (1− α)q] + (1− γ)q for
γ = β

α and apply Independence.

Step 2a If p � q � r and p � r, there exists a unique α∗ ∈ [0, 1] such that q ∼ α∗p+ (1− α∗)r.
From Step 1, if α∗ as above exists, it must be unique; thus, let’s focus on existence. Also,

existence is obvious in the trivial cases q ∼ p and q ∼ r, so let’s assume that p � q � r. Let
B = {α ∈ [0, 1] : αp+ (1− α)r < q} and W = {α ∈ [0, 1] : αp+ (1− α)r 4 q}. We will show that
there exists α∗ ∈ (0, 1) such that α∗ ∈ B ∩W .

Both sets are non-empty, because 1 ∈ B and 0 ∈ W ; furthermore, Continuity implies that B
contains a point other than 1, and W contains a point other than 0. Finally, any element of W is
a lower bound for B: to see this, suppose there exist α ∈ B and β ∈W such that β > α. By Step
1, since p � r, this implies that βp + (1 − β)r � αp + (1 − α)r. But, by the choice of α and β,
q < βp + (1 − β)r and αp + (1 − α)r < q, so by Transitivity we get q � q, a contradiction. Thus,
for all α ∈ B and β ∈W , α ≥ β.

It follows that, in particular, B is a non-empty set that is bounded below, and hence has a
greatest lower bound, denoted α∗ ∈ [0, 1]. This is the only “high-tech” (?) statement in this proof.

Since B contains a point other than 1, α∗ < 1; and since W contains a non-zero point that, as
argued above, is also a lower bound for B, α∗ > 0.

Next, α∗ ∈ B; to see this, argue by contradiction. If α∗ 6∈ B, then α∗ ∈ W , so α∗p + (1 −
α∗)r ≺ q ≺ p. Continuity then yields γ ∈ (0, 1) such that γ[α∗p + (1 − α∗)r] + (1 − γ)p ≺ q, i.e.
[γα∗+(1−γ)]p+γ(1−α∗)r ≺ q. This means that γα∗+(1−γ) ∈W , and so this quantity is also a
lower bound to B; but, since α∗ ∈ (0, 1) and γ ∈ (0, 1), γα∗+(1−γ) > α∗, which contradicts the fact
that α∗ = inf B. Finally, α∗ ∈ W . The argument is similar to the one just given: if α∗ 6∈ W , then
α∗p+(1−α∗)r � q � r, and Continuity yields γ ∈ (0, 1) such that γ[α∗p+(1−α∗)r]+(1−γ)r � q,
i.e. γα∗p + [γ(1 − α∗) + (1 − γ)]r � q. But this implies that γα∗ ∈ B, and since α∗, γ ∈ (0, 1),
γα∗ < α∗, which contradicts the fact that α∗ is a lower bound to B.

Step 2b If p ∼ q, then αp+ (1− α)r ∼ αq + (1− α)r for all r ∈ L(X) and α ∈ [0, 1].
This is a bit tricky. First, suppose that, for all s ∈ L(X), s ∼ p ∼ q: then in particular this is

true for s = αp+ (1− α)r and s = αq + (1− α)r, so there is nothing to prove.
Next, suppose that there exists s ∈ L(X) with s � p ∼ q, and that, for definiteness, αp + (1 −

α)r � αq + (1 − α)r for some α ∈ (0, 1) and r ∈ L(X) [To clarify, the latter assumption is really
only for definiteness: if the opposite strict preference holds, just rename p to q and q to p. Also
note that s is not necessarily the same as r.] We will derive a contradiction in three steps:

(a) For all β ∈ (0, 1), Independence and s � q implies that βs+(1−β)q � βq+(1−β)q = q ∼ p.
(b) For all β ∈ (0, 1), Independence and βs + (1 − β)q � p, which we got from (a), imply that

also α[βs+ (1− β)q] + (1− α)r � αp+ (1− α)r.
(c) Now fix β = 1

2 . Then, from (b) and the initial assumption, we have α[12s+ 1
2q] + (1− α)r �

αp+ (1− α)r � αq + (1− α)r. But then Continuity implies that there exists γ ∈ (0, 1) such that

αp+ (1− α)r � γ

{
α

[
1
2
s+

1
2
q

]
+ (1− α)r

}
+ (1− γ)[αq + (1− α)r]

= α

{
1
2
γs+

(
1− 1

2
γ

)
q

}
+ (1− α)r,

which constitutes a violation of (b) for β = 1
2γ ∈ (0, 1).
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Finally, the case p ∼ q � s is handled similarly: the details are omitted.

Step 3. We can now conclude the proof by constructing a function U : L(X) → R that satisfies
properties (i) and (ii) in the statement of Theorem 1.

By Step 2a and the assumption that p∗ � p∗, for all p with p∗ < p < p∗ we can let U(p) be the
unique α such that p ∼ αp∗+(1−α)p∗. For p � p∗, let U(p) = 1

α , where α is the (unique, again by
Step 1) α such that αp + (1 − α)p∗ ∼ p∗. [Intuitively, the “better” p is, the “smaller” must α be,
and thus the “larger” 1

α is.] Similarly, for p ≺ p∗, let U(p) = − α
1−α , where α is the unique weight

for which αp∗ + (1 − α)p ∼ p∗. [similar intuition] We now verify that properties (i) and (ii) hold.
Both are boring, but conceptually straightforward.

(i) Consider p, q ∈ L(X); we must show that p ∼ q implies U(p) = U(q) and p � q implies
U(p) > U(q).

If p∗ < p < q < p∗, the claim follows from Steps 1 and 2a and the definition of U : specifically,
U(p)p∗+[1−U(p)]p∗ ∼ p < q ∼ U(q)p∗+[1−U(q)]p∗ implies U(p) ≥ U(q) [consider the contrapos-
itive of Step 1]; furthermore, p � q and U(p) = U(q) would yield U(p)p∗ + [1− U(p)]p∗ ∼ p � q ∼
U(q)p∗ + [1− U(q)]p∗ = U(p)p∗ + [1− U(p)]p∗, a contradiction: hence, in this case, U(p) > U(q).

If p � p∗ � q, then by construction U(p) > 1 and U(q) < 1, so again the claim holds, and indeed
the strict preference is seen to yield a strict inequality; similarly if p � p∗ � q.

There are two remaining cases: p < q � p∗ and p∗ � p < q; I only analyze the former, as
the latter is similar. By definition, 1

U(p)p +
(
1− 1

U(p)

)
p∗ ∼ p∗ ∼ 1

U(q)q +
(
1− 1

U(q)

)
p∗. Suppose

p ∼ q: by Step 2b, p∗ ∼ 1
U(p)p +

(
1− 1

U(p)

)
p∗ ∼ 1

U(p)q +
(
1− 1

U(p)

)
p∗, so by Step 1, 1

U(p) is
the unique number α∗ ∈ [0, 1] such that α∗q + (1 − α∗)p∗ ∼ p∗; but by definition this means
that U(q) = 1

α∗ = U(p), as required. Suppose instead p � q: then Independence implies that

p∗ ∼ 1
U(p)p +

(
1− 1

U(p)

)
p∗ � 1

U(p)q +
(
1− 1

U(p)

)
p∗; by Step 1, this implies that the unique

α∗ ∈ [0, 1] such that α∗q + (1 − α∗)p∗ ∼ p∗ must satisfy α∗ > 1
U(p) ,

1 so U(q) = 1
α∗ < U(p), as

required.
(ii) Consider p, q ∈ L(X) and α ∈ (0, 1). Suppose first that p∗ < p < q < p∗. By definition,

U(p)p∗ + [1− U(p)]p∗ ∼ p and U(q)p∗ + [1− U(q)]p∗ ∼ q. By Step 2b, U(p)p∗ + [1− U(p)]p∗ ∼ p
implies

α{U(p)p∗ + [1−U(p)]p∗}+ (1−α){U(q)p∗ + [1−U(q)]p∗} ∼ αp+ (1−α){U(q)p∗ + [1−U(q)]p∗};
similarly, U(q)p∗ + [1− U(q)]p∗ ∼ q implies

(1− α){U(q)p∗ + [1− U(q)]p∗}+ αp ∼ (1− α)q + αp.

Therefore, by Transitivity, and rearranging terms,

{αU(p) + (1− α)U(q)}p∗ + {1− αU(p)− (1− α)U(q)}p∗ ∼ αp+ (1− α)q,

which, by Step 1, means that αU(p) + (1 − α)U(q) is the unique number α∗ ∈ [0, 1] such that
α∗p∗+(1−α∗)p∗ ∼ αp+(1−α)q; but, by definition, this number is of course just U(αp+(1−α)q),
which proves the claim in this case.

The other cases are too boring to do in full detail. Trust me, (ii) holds for all p, q.

1We know α∗ 6= 1
U(p)

because p∗ � 1
U(p)

q +
“
1− 1

U(p)

”
p∗: Step 1 tells us that any smaller value of α∗ yields an

even less preferred mixture of q and p∗.
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Finally, let us verify the uniqueness claim. Unfortunately, we need to do cases once again.
Suppose V satisfies (i) and (ii): then, in particular, since by definition U(p)p∗ + [1− U(p)]p∗ ∼ p,
it must satisfy

V (p) = V (U(p)p∗ + [1− U(p)]p∗) = U(p)V (p∗) + [1− U(p)]V (p∗),

which means that V (p) = αU(p) + β for α = U(p∗)−U(p∗) > 0 and β = U(p∗). If p � p∗, then by
definition 1

U(p)p+ (1− 1
U(p)p∗ ∼ p∗, so

V (p∗) =
1

U(p)
V (p) +

(
1− 1

U(p)

)
V (p∗),

which leads to the same conclusion. Please spare me the case p ≺ p∗, which is similar! �

3.2. The General von Neumann-Morgenstern Theorem. The following observation is now
crucial to extend the analysis to choice under uncertainty (and, it turns out, beyond!) The preceding
proof of Theorem 1 does not use the fact that the objects of choice are lotteries: they simply involve
the careful application of the axioms. The lottery nature of the objects p, q, . . . was only used in
Corollary 1, where we established the existence of vNM utility on the set X of prizes.

Furthermore, from a formal standpoint, the axioms stated above make sense whenever the set
of objects of choice is convex, which ensures that we know how to take convex combinations. In
other words, whenever we are given a convex set Z of objects, we can consider a relation <∗ on Z
and at least write down the counterpart of the Weak Order, Continuity and Independence axioms
above. The argument given in the proof of the preceding theorem still applies. Hence, we have:

Theorem 2 (The True vNM Theorem). Let Z be a convex subset of a vector space and <∗ a binary
relation on Z. The following are equivalent:

(1) <∗ (and the corresponding strict preference �∗) satisfy
(a) Weak Order: <∗ is complete and transitive;
(b) Continuity: If z �∗ z′ �∗ z′′, then there exist α, β ∈ (0, 1) such that αz+ (1−α)z′′ �∗

z′ �∗ βz + (1− β)z′′;
(c) Independence: If z �∗ z′ and α ∈ (0, 1), then for all z′′ ∈ Z, αz + (1 − α)z′′ �∗

αz′ + (1− α)z′′.
(2) There exists a function U : Z → R such that, for all z, z′ ∈ Z,

(a) z <∗ z′ iff U(z) ≥ U(z′), and
(b) for all α ∈ [0, 1], U(αz + (1− α)z′) = αU(z) + (1− α)U(z′).

Furthermore, if a function V : Z → R satisfies (2) above, there exist real numbers α > 0 and β
such that V (z) = αU(z) + β for all z ∈ Z.

Of course, Corollary 1 does not generalize to arbitrary convex sets Z—simply because there may
not be “prizes” to speak about!

3.3. Choice under Uncertainty. Now comes the big payoff. Turn to the setting of choice under
uncertainty. You may have noticed that I have not introduced notation for the set of all acts. This
is because, depending on the required level of generality, we may need to consider different sets.
For the purposes of these lecture notes, I focus on the case of a finite state space S; below I provide
some indications as to how to extend the analysis.
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As long as there are finitely many states, acts are simply vectors of lotteries, indexed by the
states. In this environment, we need to consider the set of all such vectors, which we might denote
by [L(X)]S . If we write S = {s1, . . . , sN}, we can also denote the set of all acts by [L(X)]N ;
however, I prefer the former notation, because it reminds us that acts are functions in general.

If you really need to know, if S is infinite, we need to worry about measurability issues;
furthermore, it turns out that we can restrict attention to simple acts, i.e. acts that take up
finitely many distinct values (lotteries), much like we can and do restrict attention to finite
lotteries in the setting of choice under risk. It turns out that the EU representation over
simple acts has a unique continuous extension to the set of all bounded, measurable acts
(where continuinty and boundedness can be suitably defined). But, to formalize all this,
additional notation is required. Let’s not bother here.

In light of the preceding discussion, let us first restate the three key axioms in the Von Neumann-
Morgenstern theorem for acts.

Axiom 4 (Weak Order). < is complete and transitive.

Axiom 5 (Continuity). For all f, g, h ∈ [L(X)]S such that f � g � h, there exist α, β ∈ (0, 1) such
that αf + (1− α)h � g and g � βf + (1− β)h.

Axiom 6 (Independence). For all f, g, h ∈ [L(X)]S, and all α ∈ (0, 1): if f � g, then αf + (1 −
α)h � αg + (1− α)h.

Note that we can identify an individual lottery p ∈ L(X) with the constant act that assigns
the lottery p to each s ∈ S—much like we can identify individual prizes with degenerate lotteries.
With this identification, the axioms above apply a fortiori to L(X), so Theorem 1 implies that
the restriction of < to L(X) has an EU representation. The question is, how do we extend this
representation to arbitrary acts?

We need one additional axiom. Notice that the statement below explicitly uses the fact that <
is defined over lotteries as well, via the identification with constant acts.

Axiom 7 (Monotonicity/State Independence). For all f, g ∈ [L(X)]: if f(s) < g(s) for all s ∈ S,
then f < g.

What this axiom seems to be saying is that, if f is better than g pointwise, then f should be
considered better than g. But this would not make much sense if the same prize had a different
value in different states. So, the axiom implicitly says that this is not the case: prizes or lotteries
are equally valuable in every state. If you think this is trivially true in most cases, consider the
states “healthy” and “sick”, and the “intrinsic value” of a huge chocolate tarte (or pumpkin pie,
or whatever) in the two states... [It turns out that there is a vast literature on state-dependent
preferences. Interesting, but subtly difficult. The main contributor/proponent is Edi Karni, along
with his coauthors.]

With this additional assumption, we have:

Theorem 3 (Anscombe-Aumann). Consider a finite state space S, a set X of prizes, and a
preference relation < on [L(X)]S. The following statements are equivalent:

(1) < satisfies Weak Order, Continuity and Independence;
(2) There exists a function u : X → R and a probability P on S such that, for all f, g ∈ [L(X)]S,

f < g ⇔
∑
s∈S

U(f(s))P ({s}) ≥
∑
s∈S

U(g(s))P ({s}),
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where, for every p = (x1, p1; . . . ;xn, pn) ∈ L(X), U(p) =
∑n

i=1 piu(xi).
Furthermore, if there exist f, g ∈ [L(X)]S such that f � g, then P is unique, and u is unique up to
a positive affine transformation.

Proof. Of course, we only need to show that (1) implies (2): the other direction is easy to check.
Also, we can assume that < is not trivial, i.e. there exist f, g such that f � g, otherwise the
implication is true, but uninteresting. Notice that this implies that x � x′ for some pair of prizes
x, x′.

Note first that <, restricted to constant acts, satisfies the axioms of the vNM Theorem; hence,
there is an affine function U : L(X) → R, unique up to a positive affine transformation, such that,
for all f, g ∈ [L(X)]S such that f(s) = p and g(s) = q for all s ∈ S, f < g iff U(p) ≥ U(q).
Renormalize this U so that its image contains [−1, 1]: this will turn out to be very convenient
[this can obviously be done via a positive affine transformation]. In particular, note that there
are lotteries p0, p1, p−1 ∈ L(X) such that U(p0) = 0, U(p1) = 1, and U(p−1) = −1. Furthermore,
for all i = 1, . . . , N , there exist fi, f̄i ∈ [L(X)]S such that U(fi(si)) = 1, U(f̄(si)) = −1, and
U(fi(sj)) = U(f̄i(sj)) = 0 for i 6= j. Finally, let f0(s) = p0 for all s.

Now turn to < on general acts. As noted above, this preference satisfies the axioms of Theorem
2, so there exists an affine U : [L(X)]S → R that represents it. In particular, by the uniqueness
property of the vNM representation, U restricted to constant acts must be a positive affine transfor-
mation of U , and therefore we can renormalize it so that, indeed, U(f) = U(p) whenever f(s) = p
for all s ∈ S.

We next record two immediate consequences of Monotonicity and the fact that U is affine. First,
if U(f(s)) = γU(g(s)) for all s ∈ S and some γ ∈ [0, 1], then U(f(s)) = U(γg(s) + (1 − γ)f0(s)
for all s, i.e. f(s) ∼ γg(s) + (1 − γ)f0; Monotonicity then implies that f ∼ γg + (1 − γ)f0,
so U(f) = γU(g) [because U(f0) = U(p0) = 0.] Second, if U(f(s)) = −U(g(s)) for all s, then
U(1

2f(s) + 1
2g(s)) = U(po) = U(f0(s)) for all s: that is, 1

2f(s) + 1
2g(s) ∼ f0(s) for all s; again, by

Monotonicity, 1
2f + 1

2g ∼ f0, so 1
2U(f) + 1

2U(g) = 0, and therefore U(f) = −U(g). In particular,
U(fi) = −U(f̄i) for all i.

Consider an act g ∈ [L(X)]S such that, for all s ∈ S, U(g(s)) ∈ [−1, 1], and
∑

s |U(g(s))| = 1.
Consider the mixture h =

∑N
i=1 U(g(si))gi, where gi = fi if U(g(si)) ≥ 0, and gi = f̄i if U(g(si)) <

0. Thus, for every i = 1, . . . , N , h(si) = |U(g(si))|p1 + [1 − |U(g(si))|]p0 if U(g(si)) ≥ 0, and
h(si) = |U(g(si))|p−1 + [1 − |U(g(si))|]p0 if U(g(si)) < 0, because fj(si) = f̄j(si) = p0 for all
j 6= i. This implies that, regardless of the sign of U(g(si)), U(h(si)) = U(g(si)), and therefore
h(si) ∼ g(si) for all i = 1, . . . , N . Monotonicity then yields h ∼ g. But then, since U is affine and
U(fi) = −U(f̄i), a simple induction shows that

U(g) = U(h) =
N∑

i=1

|U(g(si))U(gi) =
∑

i:U(g(si))≥0

U(g(si))U(fi)+
∑

i:U(g(si))<0

[−U(g(si))]U(f̄i) =
n∑

i=1

U(g(si))U(fi).

Next, consider an act g such thatM ≡
∑

s |U(g(s))| > 1. The act h = 1
M g+

(
1− 1

M

)
f0 clearly satis-

fies U(h(s)) ∈ [−1, 1] and
∑

s |U(h(s))| = 1, so by the result just proved U(h) =
∑

s U(h(s))U(fi) =
1
M

∑
s U(g(s))U(fi). Since U(h) = 1

MU(g), it follows that U(g) =
∑

s U(g(s))U(fi) as well.
Next, consider an act g such that M ≡

∑
s |U(g(s))| ∈ (0, 1). For every s, there is a lottery

ps such that U(ps) = 1
MU(g(s)), because U(g(s)) ∈ [−M,M ] and the range of U contains [−1, 1].

Define h(s) = ps for all s, so U(Mh(s)+(1−M)f0) = U(Mps+(1−M)p0) = U(g(s)) for all s: thus,
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Mh(s)+(1−M)f0(s) ∼ g(s) for all s, and by Monotonicity Mh+(1−M)f0 ∼ g, or U(h) = 1
MU(g).

As above, U(h(s)) ∈ [−1, 1] and
∑

s |U(h(s))| = 1, so U(g) = MU(h) = M
∑

i U(h(si))U(fi) =∑
i U(g(si))U(fi).
Finally, f0 is the unique act for which

∑
s |U(f(s))| = 0, and it is clearly true that U(f0) =∑

i U(f0(si))U(fi).
To conclude the proof, notice that U(fi) ≥ 0 for all i, because fi < f0 by Monotonicity; also,∑
i

1
N fi(s) = 1

N p1 + (1− 1
N )p0 for all s: thus,∑

i

U(fi) = N
∑

i

1
N
U(fi) = NU(

∑
i

1
N
fi) = NU(

1
N
p1 + (1− 1

N
)p0) = N

1
N

= 1.

Therefore, the required probability P can be defined by letting P ({si}) = U(fi) for all i = 1, . . . , N .
Uniqueness of P follows from non-triviality and the fact that, for every state s and x, x′ ∈ X

such that x � x′, there is a unique α ∈ [0, 1] such that αx + (1 − α)x′ ∼ f , where f(s) = x and
f(s′) = x′ for all s′ 6= s. �

4. Key Concepts and Applications of EU

The economics literature is a vast repository of applications of EU theory; MWG Chap. 6 offers
a brief overview of “classical” topics such as portfolio choice and insurance. Read it up!

I do wish to emphasize a few key concepts and techniques. These apply to settings characterized
by risk or uncertainty. To provide a unified treatment, it is useful to adopt the language of statistics
and refer to preferences over random variables, in lieu of lotteries or acts. But you should realize
that this is merely out of terminological convenience. After all, lotteries can be viewed as probability
distributions of random variables: (x1, p1; . . . ;xn, pn) can be viewed either as a lottery that yields
the prize xi with probability pi, or as the probability distribution of a random variable—call it x̃—
that takes the value xi with probability pi. Furthermore, recall that a random variable is nothing
but a (measurable) function from one (measurable) space to another; in our case, the domain is
S, the state space, and the range is X, the set of prizes; so, “act” is really just a fancy name for
“random variable”!

For simplicity, we will also assume throughout that X is a convex subset of R. [However, note that
people can and do talk about random vectors, random consumption bundles, random consumption
streams, etc.; we can think of these objects as random variables that take values in some set of
vectors, consumption bundles, consumption streams, etc., as the case may be. Thus, in fact, the
concept of random variable is quite a bit more general than one might think, as are most of the
definitions and results in this section.]

Bottom line: we consider preferences < over random variables taking values in a convex subset X
of R. We typically interpret prizes as monetary quantities. Again, each random variable, denoted
x̃, ỹ, etc., may correspond to a lottery-as-probability-distribution, or it may be an act, for some
suitably defined state space. As usual, we abuse notation and write things like x̃ < x to mean that
the r.v. x̃ is weakly preferred to the prize (or degenerate r.v.) x.

We will be interested in making probabilistic statements about these random variables. To do
so, we will assume that each random variable is characterized by a cumulative distribution
function, or c.d.f, denoted F,G, etc. For continuous random variables, we will use density
functions, denoted f, g, etc. We may also need to refer to joint c.d.f.’s or density functions.
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If you don’t recall the relevant definitions, seek immediate help! However, I do wish to point out
the connections between lotteries, acts, and c.d.f.’s, in the case X = R.

First, if p = (x1, p1; . . . ;xn, pn) is a lottery and x̃ denotes the corresponding r.v. [short for
“random variable”, not “recreational vehicle”], then the c.d.f. of x̃, denoted F : R → [0, 1], can be
obtained by letting

F (x) =
∑

i:xi≤x

pi.

Note that this will be a step function; in particular, if x1 < x2 < . . . < xn, then F (x1) = p1 and
F (xi)− F (xi−1) = pi for i = 2, . . . , n.

Second, if P is a probability measure on the state space (S,A), and f : S → R is an A-measurable
act, then of course

F (x) = P ({s : f(s) ≤ x}).
In particular, if f is a simple function, so that it can be written as f(s) =

∑n
i=1 1Ei(s)xi for some

partition E1, . . . , En of S, then F (x) =
∑

i:xi≤x P (Ei). Again, if x1 < . . . < xn, then F (x1) = P (E1)
and F (xi)− F (xi−1) = P (Ei) for i = 2, . . . , n.

As these examples suggest, c.d.f.’s are non-decreasing, right-continuous functions that satisfy the
normalization conditions limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

As far as notation is concerned, again ifX = R and F is right-continuous, non-decreasing function
(e.g. the c.d.f. of a r.v., but not necessarily),

∫
A g(x)F (dx) or

∫
A g(x)dF denote the integral of the

function g : R → R over the measurable set A ⊂ R with respect to F . You can think of this as
either a Riemann or a Lebesgue integral (or something even fancier).

As usual, the region of integration is omitted if it equals the domain of F , i.e. all of X = R.
If F is the identity, then

∫
g(x)dF is also denoted

∫
g(x)dx. Finally, the expectation of a r.v. x̃

with c.d.f. F is denoted E[x̃] ≡
∫
xdF . Expectations of functions of r.v.’s are also denoted by

E[g(x̃)] =
∫
g(x)F (dx), where F is the c.d.f. of x̃. Thus, the expected utility of a random variable

x̃ will be typically denoted by E[u(x̃)].
Let me conclude with a key fact about the expectation of functions of random variables.

Lemma 1. Suppose X = R. For all random variables x̃ and all concave functions g : R → R,
E[g(x̃)] ≤ g(E[x̃]).

Proof. Consider first a random variable that takes up finitely many values x1 < . . . < xn. Let F
be its c.d.f. and define p1 = F (x1) and pi = F (xi) − F (xi−1) for all i = 2, . . . , n. Then clearly
E[x̃] =

∑
i pixi and g(E[x̃]) =

∑
i g(xi)pi. Since g is concave, g(λx+(1−λ)y) ≥ λg(x)+(1−λ)g(y)

for all λ ∈ [0, 1] and x, y ∈ R. A simple induction argument then proves the claim for this r.v..
Without providing the details, this implies that the result is true for all bounded r.v.’s, because

they can be approximated by a uniformly convergent sequence of step (i.e. simple) r.v.’s. Finally,
the claim can be extended to arbitrary r.v.’s. �

4.1. Certainty Equivalents and Risk Aversion. Begin with a basic definition:

Definition 3. Consider a random variable x̃. Then a prize x ∈ X is a certainty equivalent of
x̃ if x ∼ x̃.

The concept is typically applied in settings where X = R or X = R+, representing monetary
outcomes. But the idea is general, and the term “certainty equivalent” self-explanatory.
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Note that certainty equivalents may fail to exist in general settings: for instance, consider an EU
DM whose Bernoulli utility exhibits a discontinuity at some x0, and a r.v. x̃ such that limx↑x0 u(x) <
E[u(x̃)] < limn↓x0 u(x). On the other hand, a r.v. may have multiple certainty equivalents: consider
e.g. an EU DM whose Bernoulli utility has flat portions. But, with monetary outcomes, we typically
assume that vNM utility is continuous and strictly increasing in money, so the certainty equivalent
exists and is unique. Under these conditions, the certainty equivalent x of a r.v. x̃ must satisfy

x = u−1 (E[u(x̃)]) .

The notation CE[x̃] (or similar) is sometimes used to denote the certainty equivalent of p.

The main reason why EU theory is useful is probably related to the following definition.

Definition 4. A preference relation < is risk-averse (resp. -neutral, -loving) iff, for all r.v.’s x̃,

E[x̃] < x̃

(resp. ∼ x̃, 4 x̃).

That is: a DM is risk-averse if she (weakly) prefers to receive the expected value of a r.v x̃ to the
r.v. itself. Equivalently, under the assumption that certainty equivalents exist, a DM is risk-averse
iff, for any r.v. x̃, E[x̃] ≥ CE[x̃].

Many characterizations of risk-aversion are available. The most basic one relies on Jensen’s
Inequality:

Proposition 1. An EU preference relation < with Bernoulli utility u is risk-averse if and only if
u is concave.

Proof. The “if” part follows from Lemma 1. For the “if” part, fix x, y ∈ X and λ ∈ [0, 1]. For
definiteness, assume x > y; consider a r.v. x̃ with c.d.f. F such that F (z) = 0 for z < y,
F (z) = 1 − λ for z ∈ [y, x), and F (z) = 1 otherwise. Then clearly E[x̃] = λx + (1 − λ)y and
E[u(x̃)] = λu(x) + (1− λ)u(y), and concavity of u yields the required conclusion. �

It is also possible to compare different individuals’ risk attitudes. The basic idea is simple.
Suppose an individual (Ann) weakly prefers a random variable x̃ to a certain prize x. Then, an
individual (Bob) who is less risk-averse than Ann should also prefer x̃ to x. This intuition of
course requires that the ranking of prizes be the same across individuals. The following definition
formalizes these ideas, under the usual assumption that preferences are strictly increasing in money.

Definition 5. Suppose that <1 and <2 are such that, for all i = 1, 2 and x, y ∈ X, x <i y iff
x ≥ y. Then <1 is at least as risk-averse as <2 iff, for all r.v.’s x̃ and prizes x, x̃ <1 x implies
x̃ <2 x.

For EU preferences, it is relatively simple to compare risk attitudes:

Proposition 2. Under the conditions of Def. 5, assume further that, for i = 1, 2, <i is an EU
preference with continuous Bernoulli utility ui. Then <1 is at least as risk-averse as <2 iff there
exists a concave, strictly increasing function g : u2(X) → R such that u1(x) = g(u2(x)).

Proof. Suppose such a function g can be found. Then x̃ <1 x iff E[u1(x̃)] ≥ u1(x), i.e. iff
E[g(u2(x̃))] ≥ g(u2(x)). By Jensen’s Inequality (Lemma 1), since g is concave, the l.h.s. is not
greater than g(E[u2(x̃)]; and since g is strictly increasing, this implies that E[u2(x̃)] ≥ u2(x), i.e.
x̃2 <2 x, as required.
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In the opposite direction, assume each <i is monotonic w.r.to prizes and <1 is at least as risk-
averse as <2. Define g : u2(X) → R by letting g(r) = u1(x) whenever u2(x) = r. Notice that g is
well-defined, because u2(x) = u2(y) implies u1(x) = u1(y); furthermore, u2(x) = r > r′ = u2(x′)
imply u1(x) > u1(x′), so g is strictly increasing. To show that it is also concave, fix r, r′ ∈ u2(X)
such that r > r′ and r = u2(x), r′ = u2(x′). Consider a r.v. x̃ with probability distribution
(x, λ;x′, 1 − λ). Since u1 is continuous and strictly increasing, there exists a unique certanity
equivalent y of x̃ for <1: hence, x̃ ∼1 y. By assumption, this implies that x̃ <2 y. Therefore,
λu2(x) + (1 − λ)u2(x′) ≥ u2(y) = u2(u−1

1 (λu1(x) + (1 − λ)u1(x′))). But u2(x) = r, u2(x′) = r′,
u1(x) = g(u2(x)) = g(r) and similarly u1(x′) = g(r′), so we get λr+(1−λ)r′ ≥ u2(u−1

1 (λg(r)+(1−
λ)g(r′))). Finally, by definition g(t) = u1(u−1

2 (t)), so u2(u−1
1 (t)) = g−1(t), so the above inequality

reduces to λr + (1− λ)r′ ≥ g−1(λg(r) + (1− λ)g(r′)), or g(λr + (1− λ)r′) ≥ λg(r) + (1− λ)g(r′),
as required. �

We also have an equivalent characterization in terms of certainty equivalents:

Corollary 2. Under the same assumptions, <1 is at least as risk-averse as <2 iff CE1[x̃] ≥ CE2[x̃]
for every r.v. x̃, where CEi[·] denotes certainty equivalents w.r.to <i.

Proof. Clearly, the above assumption implies that <1 is at least as risk-averse as <2 [provide the sim-
ple details]. In the other direction, u1(x) = g(u2(x)) for all x implies that CE1(x̃) = u−1

1 (E[u1(x̃)]) =
u−1

2 (g−1(E[g(u2(x̃))])) for all r.v. x̃; by Jensen’s inequality, E[g(u2(x̃))] ≤ g(E[u2(x̃)]), and since
u−1

2 and g−1 are strictly increasing, we get u−1
1 (E[u1(x̃)]) ≤ u−1

2 (E[u2(x̃)]), as required. �

4.2. Measures of Risk Aversion. Without further ado, here are the relevant definitions.

Definition 6. Consider an EU DM with twice continuously differentiable Bernoulli utility u. The
Arrow-Pratt measure of absolute risk aversion is the function

A(x) = −u
′′(x)
u′(x)

.

The Arrow-Pratt measure of relative risk aversion is the function

R(x) = −xu
′′(x)
u′(x

) = xA(x).

Remark 1. An EU DM with twice continuously differentiable Bernoulli utility u is risk-averse
(-loving, -neutral) if and only if the corresponding Arrow-Pratt measure A(·) is non-negative (resp.
non-positive, zero).

If you really like taking derivatives, you can even prove the following:

Proposition 3. Consider two EU DM’s with twice continuously differentiable Bernoulli utilities
u1, u2. Then <1 is more risk-averse than u2 iff the respective Arrow-Pratt measures A1 and A2

satisfy A1(x) ≥ A2(x) for all x ∈ X.

Thus, the Arrow-Pratt measures provide a partial ordering of EU preferences in terms of risk-
aversion. This, in itself, is not so exciting. What’s more interesting is the source of these quantities.
MWG provides an answer, but I’m going to give you a slightly different (and somewhat more
traditional) one.
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The basic observation, in either case, is that the notion of (comparative) risk aversion considered
in the previous subsection is global. It would be nice if we had a local measure. For instance,
this would make it possible for us to say that an individual “becomes less risk-averse as she gets
wealthier”—which certainly sounds true.

That’s where the Arrow-Pratt measures kick in. One way to address this issue is to ask the
following question. Consider an individual whose initial wealth is W dollars. A “risk” is a r.v. with
zero expectation. Now suppose that this individual is subject to a “risk” x̃, so that his terminal
wealth, absent any “protective measure”, will be W − x̃. Clearly, regardless of W , a risk-averse
individual will dislike being subject to this risk: this much we know from our previous analysis.
Question: how much would this individual be willing to pay in order to avoid it? This leads to the
following definition [which is independent of the concavity of u].

Definition 7. Consider an EU DM with strictly increasing and continuous Bernoulli utility. The
(insurance) risk premium at wealth level W for the risk x̃ is the quantity π(W, x̃) such that

W − π(W, x̃) ∼W − x̃.

The idea is that the DM is just indifferent between paying π(W, x̃) and avoiding the risk, and
not paying this premium while being subject to the risk.

Note that the risk premium obviously also depends upon u, but this is not indicated for notational
simplicity. Also, under the stated assumptions about u, the risk premium always exists and is
unique: in particular, note that we must have

W − π(W, x̃) = CE[W − x̃].

The basic idea is now that, for “small” risks, π(W, x̃) is proportional to A(W ), up to second-order
terms. The basic trick is to define “small” in a meaningful way. Fix a r.v. x̃ with E[x̃] = 0, and
define

g(k) = π(W,kx̃).
We are going to assume that g is twice differentiable. This is true provided u is twice continuously
differentiable [I think: under “suitable regularity conditions” otherwise...] Here, we consider a risk
kx̃ “small” if k is small; ultimately, we will Taylor-expand g(k) around 0, and for k small we will
get a reasonable approximation.

Now note that g(0) = 0: if there is no risk, the DM does not wish to pay any premium. Second,
consider the equation that determines g(k), namely u(W − g(k)) = E[u(W − kx̃)]. Assuming that
it’s OK to differentiate under the integral sign, differentiate w.r.to k to get

−u′(W − g(k))g′(k) = E[−u′(W − kx̃)x̃]

[it is useful to do these calculations for the case of a discrete r.v., just to make sure nothing funny is
going on!] For k = 0, the l.h.s. equals −u′(W )g′(0) and the r.h.s. equals −u′(W )E[x̃] = 0, because
E[x̃] = 0. Since u is strictly increasing, u′(W ) > 0, and we can conclude that g′(0) = 0.

Now differentiate again the above equation w.r.to k:

−u′′(W − g(k))[−g′(k)]2 − u′(W − g(k))g′′(k) = E[u′′(W − kx̃)x̃2].

Again consider k = 0. We have shown that g′(0) = 0, so the l.h.s. reduces to −u′(W )g′′(0). The
r.h.s., on the other hand, equals u′′(W )E[x̃2] = u′′(X)Var[x̃], again because E[x̃] = 0. Therefore,
we get g′′(0) = −u′′(W )

u′(W ) Var[x̃] = A(W )Var[x̃].
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Finally, consider a second-order Taylor expansion of g around 0: we get

π(W,kx̃) = g(k) ≈ g(0) + kg′(0) +
1
2
k2A(W )Var[x̃] =

1
2
A(W )Var[kx̃].

Thus, as claimed, for “small” risks ε̃, π(W, ε̃) ≈ 1
2A(W )Var[ε̃].

[Notice that this argument is not exactly a paragon of rigor, but it gets the job done]

4.3. Stochastic Dominance. The last useful set of definitions pertains to orderings of r.v.’s that
are consistent with, but coarser than EU. The basic idea is that, in a variety of situations, we wish
to make predictions without introducing Bernoulli utility functions. You can look at the details in
MWG, but there are two main definitions of interest. The first is straightforward.

Definition 8. A r.v. with c.d.f. F is said to first-order stochastically dominate another r.v.
with c.d.f. G iff, for all x ∈ X, F (x) ≤ G(x).

This means the following: for every “target” prize x, the first r.v. is never more likely to yield
x or less than the second. Equivalently, the first r.v. is always at least as likely as the second to
yield strictly more than x. This is clearly a good thing!

The following characterization is nice and useful—and you should prove this result for your
personal edification!

Proposition 4. A r.v. x̃ with c.d.f. F first-order stochastically dominates a r.v. ỹ with c.d.f. G
iff, for all strictly increasing Bernoulli utility functions u, E[u(x̃)] ≥ E[u(ỹ)].

Thus, any DM who likes more money to less will agree that x̃ is at least as good as ỹ. Indeed,
first-order stochastic dominance is a good thing! Note that it yields a partial ordering, but one
that is still useful e.g. for comparative statics...

There is a second, stronger (i.e. more discriminating) notion. For this, we need to consider
jointly distributed r.v.’s. Consider x̃, ỹ, z̃, and assume that (1) ỹ = x̃ + z̃, and (2) E[z̃|x̃] = 0.
This means that ỹ differs from x̃ by the addition of a “conditional risk”—a random variable whose
conditional distribution given any possible realization of x̃ has zero mean.

A simple example: x̃ and z̃ are independent, with E[z̃] = 0. But, for a more interesting example,
suppose that x̃ has distribution, say, (10, 1

2 ; 5, 1
2) and z̃ has conditional distribution (5, 1

2 ;−5, 1
2)

given x̃ = 10, and (0, 1) given x̃ = 5. Then ỹ = x̃ + z̃ has distribution (15, 1
4 ; 5, 3

4). Notice that
E[ỹ] = E[x̃], but in an intuitive sense ỹ is “more risky”—its values are more spread out, for one
thing.

In this case, x̃ should be seen as “better” than ỹ:

Definition 9. Consider two r.v.’s x̃ and ỹ with E[x̃] = E[ỹ]. Then x̃ second-order stochastically
dominates ỹ iff there is a r.v. z̃ such that (1) ỹ = x̃+ z̃, and (2) E[z̃|x̃] = 0.

Since a notion of risk is involved, risk-averse individuals should prefer second-order stochastically
dominating r.v.’s. Indeed, this is the case, as is relatively easy to prove integrating by parts. But
the converse is also true (although the proof is much harder):

Proposition 5. Consider two r.v.’s x̃ and ỹ with E[x̃] = E[ỹ]. Then x̃ second-order stochasti-
cally dominates ỹ if and only if E[u(x̃)] ≥ E[u(ỹ)] for all strictly increasing and concave Bernoulli
utilities u.
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Thus, indeed, for r.v.’s with the same mean, second-order dominance refines the ordering given
by first-order dominance.

4.4. Terminal Wealth Levels. I conclude with a comment on the interpretation of X, the set
of “prizes”. Recall that one motivation behind the Arrow-Pratt measure of risk aversion was to
provide a “local”, i.e. wealth-dependent measure of risk aversion. For this to even be possible,
it must be the case that prizes represent terminal wealth levels. Under this assumption,
it is meaningful to consider some initial wealth W and, for instance, calculate the risk premium
corresponding to a risk x̃. As we have seen, this premium is a function of initial wealth. If prizes
represented only changes in wealth, i.e. “gains and losses”, this exercise would be pointless. It
would not even be possible [within the standard EU framework] to talk about concepts such as
decreasing risk aversion—one would have to ask, “decreasing relative to what?”

I wish to emphasize that the axiomatic treatment of the previous section does not attach any
meaning at all to prizes. They could be gains and losses, and the von Neumann-Morgenstern proof
wouldn’t even notice!

Yet, it is typical in 99% of economic analysis to assume that prizes are terminal wealth levels.
Just to be clear, this means that, unless instructed to do otherwise, you must do the same in your
classwork! Example: if you are asked to calculate how much an investor would be willing to pay
for a risky asset, or what fraction of her wealth she is willing to invest in risky assets, your answer
must take her initial wealth into account. It would be wrong not to do this! And, again, there are
huge practical benefits to this assumption.

However, there are phenomena, such as the widely documented fact that people are “risk-seeking
in losses and risk-averse in gains”, that cannot be modeled if prizes correspond to final wealth levels.
So, there is a price to be paid. Most of the time, it’s worth paying it.


