
From Java to C++
There and never back again

Roland Lezuo

tbfg@se-linux.inso.tuwien.ac.at

183 Institut für Rechnergestützte Automation - INSO

– p. 1

Overview
Programming languages

First C++ program

Concepts supported by C++

Advanced C++

– p. 2

Perfect language
easy to learn and use

can do everything with it

code once run everywhere

uses platform specific features

offers high level abstraction

is efficient

is stylish

– p. 3

Perfect language
cont’d

Of course: There is no such thing as a perfect
language! (Right not even C++ is perfect)
Wishlist:

orthogonallity of features

opt-in of each feature

static typesafety?

no syntax?

bindings for other languages?

– p. 4

C++ usage

kernels (MacOS X)

middleware (Ice, google)

large applications (openoffice.org)

games

embedded (but: stack usage)

– p. 5

Goodbye world in
Java

class MemLeak

{

// although there is no such thing as a memory leak in java, this leaks

// like a barrel without bottom.

private static java.util.Vector buffer = new java.util.Vector();

public static void main(String args[])

{

for (;;) {

java.lang.Integer i = new java.lang.Integer(1);

buffer.add(i);

}

}

}

– p. 6

Hello world in C++
#include <iostream>

#include <cstdlib>

int main(int argc, char* argv[])

{

std::cout << "Hello World!" << std::endl;

exit(EXIT_SUCCESS);

}

– p. 7

The differences
C++ is an extension of C and mostly backwards
compatible.

classes are an extension and not mandatory

main outside of a class definition

everything outside of a class definition is static

return value is status for operation system and
a must

int main(void) is possible

– p. 8

Declaration and
definition

In C++ declaration and definition are separated.
Declarations are in so called header files only
contain the informations needed to use the class,
the definition is in a separate file including the
header and implementing the declarations made
there.

⇒ Writing a .h file is software architecture
⇒ Writing a .cpp file is programming.

– p. 9

Headers in C++
#ifndef myclass_hh_

#define myclass_hh_

class myClass {

private:

int _var;

public:

myClass(int);

~myClass() { }

int getVar() { return _var; }

void setVar(int var=0);

};

#endif

– p. 10

Headers in C++
cont’d

include guardians needed when included in
more than one source file

inline function will be generated without
creating a method, does not always work

there will be default constructors and
destructors if you don’t specify them

headers define interface to class and shall
hide implementation details

– p. 11

Implementation in
C++

#include "myclass.hh"

#include <cstdlib>

myClass::myClass(int seed)

{

srand(seed);

_var = rand();

}

void myClass::setVar(int var)

{

_var = var;

}

– p. 12

Include essence

Second most important single slide!

– p. 13

Function overloading

Different functions having the same name,
resolved at compile time.

return value not included to differ functions

Problem: name mangling, use one compiler for
whole source tree

– p. 14

Polymorphic
functions

Class child is subclass of parent and overloads a
method. Using a pointer to the parent call but
having a child instance needs ability to resolve
right function a run time.

vtable implementation

additional cost at runtime for each call

In C++ you can control these costs, in Java not.

– p. 15

Virtual functions
#ifndef virtual_hh

#define virtual_hh

class myVirtualClass {

public:

virtual bool polymorphicMember();

void nonPolymorphicMember();

};

#endif

A method is called pure virtual if there is not
implementation for this method. You have to
mark methods as pure virtual explicitly.
virtual int method() = 0;

– p. 16

Inheritance
C++ has complex inheritance support. Supports
multiple inheritance and non public inheritance.

public inheritance is most important and does
not change access specifiers of base class

Java like interfaces with pure virtual classes in
C++

methods to be overloaded must be virtual!

you have to supply a virtual destructor for
base classes!

– p. 17

Example

#ifndef inher_hh

#define inher_hh

#include <string>

class myBase {

public:

virtual ~myBase() { };

virtual bool abstract();

};

class javaInterfaceLike {

public:

virtual ~javaInterfaceLike { }

virtual int pureVirtual() = 0;

virtual bool myBool(std::string) = 0;

};

class myClass : public myBase, public javaInterfaceLike {};

#endif

– p. 18

Objectsemantics
C++ objects differ from Java objects in the
following aspects:

C++ objects may be created on the stack!

operator= normally copies an object, in Java
you just have a reference

C++ objects created with operator new must
be deleted manually (no garbage collection)

destructor is called when object is destroyed,
guaranteed (no garbage collection :)

Perhaps most important single slide!
– p. 19

C++ pointers
Pointers are a way to access objects indirectly. A
pointer points to an object. The content of a
pointer is a memory address where an objects
exists. There is the NULL pointer pointing to no
valid object.
int i = 42;

int j = 23;

int* pi;

pi = &i; // &...addressoperator

* pi = 5; // *...dereference operator

pi += sizeof(int); // *pi == 23 now (pointing to j)

pi = 0; // pi is a NULL pointer now

– p. 20

operator new

int* pi;

pi = new(int); // create new object on heap

* pi = 23;

pi = new(int); // memory leak!

* pi = 42;

delete pi; // freeing memory

– p. 21

C++ reference
int i = 23;

int& ri = i; // every change of ri changes i now!

int& ui; // uninitialized reference not allowed!

int function(std::string& reference, std::string copy);

std::string str("42 towels");

function(str, str); // ok, string gets copied once

function(str, "test"); // ok, "test" gets copied

function("test", str); // error, "test" not const

Use reference when you want to return values
from function, use const ref if you want to avoid
coping data.
int function(const std::string&);

– p. 22

Stack vs. Heap

void function(void) {

Object * objr;

{ Object obj; // constructor called, on stack

obj.doSomething(); // call method using . !

objr = new(Object); // constuctor called, on heap

} // destructor called

objr->doSomething(); // call method using -> !

delete objr; // destructor called, don’t forget delete!

}

Access stack objects using .

-> is a shortcut for (*object).method()

operator new[] needs delete[] not delete

– p. 23

Exceptions

class myException { };

class myClass {

public:

myClass();

~myClass() throw();

void complex() throw(int, myException);

};

ctor may throw every exception

dtor is defined to not throw exceptions, dtor
MUST NOT throw exceptions.

complex may throw int and myException, any
other type will cause the program to abort with
an exception violation

– p. 24

Catching exceptions

try {

complex();

} catch (int& i) {

} catch (myException& e) {

} catch (...) {

// this can’t happen, why?

}

You don’t have to catch (opposite to Java)
anything

You should catch references of the objects...

– p. 25

C++ Summary #1
C++ is an evolution of C and there you don’t
have to use OO techniques

C++ overloadable methods must be declared
virtual

when creating objects on heap using new you
must free the memory using delete

you must dereference a pointer when
accessing its content (*)

references and addressoperator are the same
but are different! (&)

unexpected exception abort the program – p. 26

Constructors
There is no super, you link constructors, and
even initialize members via linked constructors:
see!
class myClass : public myBase {

private: int i, std::string s;

public:

myClass() : myBase(), i(911), s("help") { }

};

You HAVE TO call ctors in correct order (same
as declaration)

This code is exception safe!

– p. 27

Prevent object copy
You can prevent the copying of objects by
declaring all ctors of a class to be private.
class NonCopy {

private:

NonCopy();

public:

static NonCopy& instance();

};

– p. 28

Copy ctor
You have to define a so called copy ctor to handle
copying of classes with pointer members!
class CopyCtor {

private:

int * p;

public:

CopyCtor(const CopyCtor& tocopy)

{

p = new int;

* p = * (tocopy.p);

}

};

Third most important single slide! (actually a
consequence of the objectsemantics, but better
be explicit in an introduction lecture :)

– p. 29

4+1 casts
C++ knows of 4+1 casts, they are:

dynamic_cast<ToType>(FromType)
checks at runtime if cast was successfully,
returns 0 if not

static_cast<ToType>(FromType)
no runtime checks, use with more caution

reinterpret_cast<ToType>(FromType)
overrule compiler’s opinion about types

const_cast<ToType>(FromType)
remove const from expression

(ToType)FromType c-style – p. 30

const everywhere

const int* const getMember() const;

int const* const getMember() const;

Above lines are semantically equivalent. The
meaning of each const from left to right:

return value pointer to const int

the pointer itself is constant

this method does not alter object, and may be
called on const objects!

– p. 31

Const correctness
The compiler checks if all const constraints hold
and may optimize lot of things.

call by reference although call by value
signature

directly use value for int const instead of
memory access

Problem: data not related to "logic" if locking
whole objet ⇒ volatile

– p. 32

Operator overloading

In C++ operators are just methods with ”funny”
names and therefore you can overload them.
You may not overload:
:: sizeof ?: .
You may overload:
+ - * / = < > +=
-= * = /= << >> <<= >>= ==
!= <= >= ++ -- % & ˆ
! | ˜ &= ˆ= |= && ||
%= [] () new delete ->

– p. 33

Namespaces

namespace myNamespace { //declaration

class myClass {

void dummy();

};

}

void myNamespace::myClass::dummy() {...} //definition

namespace myNamespace { //scoped namespace

myClass::dummy() {...}

}

using namespace myNamespace; //including namespace globally

myClass::dummy() {...}

– p. 34

C++ Summary #2
don’t forget to write copy ctor when using
pointer member field

use the 4 casts, not c-style casts!

don’t forget about const to clarify interfaces

operators may be overloaded

use namespace, don’t include everything into
global namespace

– p. 35

Generic
programming

In generic programming types are treated like
variables and used as arguments for algorithms.
C++ supports generic programming with
templates which are evaluated at compile time.
Template arguments are written between ”<” and
”>”.
template <class T>

T muladd(T a, T b, T c) {

return a + b* c;

}

Of course + and * must be defined for used T

– p. 36

Generic
programming

One can now use the template like this:
int ai=23, bi=42, ci=5;

muladd< int>(ai, bi, ci);

float af=2.3, bf=4.2, cf=0.5;

muladd< float>(af, bf, cf);

The compiler generates code at compile time,
this means generic algorithm cost space but not
runtime.

– p. 37

STL
C++ standard library mostly consists of the STL,
a library heavily using templates, hence the
name Standard Template Library. The STL offers
typesafe containers and algorithm. Uses
concept of iterators.
Deeper STL is beyond the scope of this lecture,
sorry!

– p. 38

STL example

#include <vector>

#include <iostream>

class outInt {

public:

void operator()(const int& i) {std::cout << i << " ";}

};

int main(void) {

std::vector< int> vi;

outInt oi; // function object!

vi.push_back(23);

vi.push_back(42);

for_each(vi.begin(), vi.end(), oi);

}

– p. 39

STL exmaple 2
Object are either completely constructed or not.
There are no half constructed objects. This may
be difficult to achieve if exceptions may occur,
the auto_ptr helps here. They are garbage
collectors, but don’t allow to copy objects.
myClass::myClass() throw(int) {

try {

auto_ptr<T1> p1(new T1());

auto_ptr<T2> p2(new T2());

} catch (...) {

throw 23; // error code

}

}

– p. 40

Boost
www.boost.org hosts a bunch of high quality
C++ libraries.

smart_ptr - Automatic garbage collection for
C++

spirit - An in source EBNF parser generator

program_options - Commandline parsing

regex - Regular expression library

Fourth most important single slide!

– p. 41

www.boost.org

That’s all folks!

Questions?

– p. 42

	Overview
	Perfect language
	Perfect language cont'd
	C++ usage
	Goodbye world in Java
	Hello world in C++
	The differences
	Declaration and definition
	Headers in C++
	Headers in C++ cont'd
	Implementation in C++
	Include essence
	Function overloading
	Polymorphic functions
	Virtual functions
	Inheritance
	Example
	Objectsemantics
	C++ pointers
	operator new
	C++ reference
	Stack vs. Heap
	Exceptions
	Catching exceptions
	C++ Summary #1
	Constructors
	Prevent object copy
	includegraphics [height=50pt]{explicit.eps} Copy ctor
	4+1 casts
	const everywhere
	Const correctness
	Operator overloading
	Namespaces
	C++ Summary #2
	Generic programming
	Generic programming
	STL
	STL example
	STL exmaple 2
	Boost
	That's all folks!

