
DSP Lab #2 Report

Course Name: Advanced DSP Applications

Revision: 0

Date: June 13, 2009

Department: School of Engineering and Information Technology

Program: Integrated Telecommunication and Computer Technologies

Prepared For: Peter Roeser, Professor

Prepared By: Jesse Schwartzentruber

Revision History

Revision Description of Change Effective Date

0 Initial Release June 13, 2009

Hands-On Experiment 5.1

Modified exp5_1.asm:

//Experiment 5_1
//This assembly program is used to illustrate the example shown in Example 5.3

#include "defBF537.h"

//Setting up the memory in the L1 data memory bank A
.section L1_data_a ;
.align 4;
.BYTE4 buffa[3] = 0x12345678, 0xabcd1234, 0xaabb1234; //set the first 3
32-bit word
//JS-MOD(a): change gap from 0x1000 to 0x4000 (4096 double words)
.var array[4093]; //set the next 4093 32-bit locations to 0y
.BYTE4 buffa1[2] = 0x00000000, 0x01012020;
.global buffa;
.global buffa1;

//Setting up the memory in the L1 data memory bank B
.section L1_data_b ;
.align 4;
//starting address 0xFF90 2000
.BYTE4 buffb[2] = 0x11223344, 0x55667788;
.global buffb;

.section program;

.global _main ;
_main :
//initialize the pointer and index registers according to Fig.5.5
P0.L = buffa;
P0.H = buffa;
P1.L = buffa1;
P1.H = buffa1;
I0.L = buffa1;
I0.H = buffa1;
M0 = 2;
P2 = 4;
SP.L = buffb+0x4;
SP.H = buffb;

//(a) 32-bit load and store
R0 = [P0];
[P1] = R0;

//(b) 16-bit and 8-bit load
R0 = w[P0](z);
R0 = b[P0](x);

//(c) post increment
R0 = [P0++];
R0 = w[P0++](z);
R0 = b[P0++](z);

//(d) stack pointer predecrement

DSP Lab #2 Report © 2009 Jesse Schwartzentruber Page 2 of 5

[--SP] = R0; //pre-decrement
R1 = [SP++]; //post-increment

//(e) modify pointer register
P0.L = buffa;
P0.H = buffa;
R1 = [P0+0x08];
R0 = [P0++P2];
R1 = [I0++M0];

// JS-MOD(b): 8 and 16 bit stores
b[P0] = R0;
w[P0] = R0;

// JS-MOD(c): 8 and 16 bit access with I0
//R1 = w[I0++M0]; // illegal (can't do bit extend or post-inc on 16b I0 access)
R1.L = w[I0];
I0 += M0;
//R1 = b[I0++M0]; // illegal (can't do 8 bit access with I0)
P0 = I0;
R1 = b[P0](z);
I0 += M0;

// JS-MOD(d): modify P0 with M0
//R0 = [P0+M0]; // illegal (can't use M reg to modify P reg)
I0 = P0;
I0 += M0;
R0 = [I0];

idle;

_main.end:

Hands-On Experiment 5.2

Modified exp5_2.asm:

// Exp5_2
// Circular Buffer example as illustrated in Example 5.4

#include <defBF537.h>

.section L1_data_a ; //Data section begins at L1 bank A memory

.align 4; //Align data to 4 byte boundary

.byte4 buff[11] = 1,2,3,4,5,6,7,8,9,10,11; //Each data is 4 bytes

.global buff; //define buff as global variable

.global _main;

.section program ; //Program section starts from L1 instruction memory

_main:

R0 = 0; R1 = 0; R2 = 0; R3 = 0; R4 = 0; R5 = 0;//clear data registers to
0

L0 = 44; //length of circular buffer = 11*4bytes
M0 = 16; //set modifier register to 4 location (4*4bytes)

DSP Lab #2 Report © 2009 Jesse Schwartzentruber Page 3 of 5

I0.L = buff; //set index register to start at buff
I0.H = buff;

B0 = I0; //set base register to start at buff

R0 = [I0++M0]; //access first element in buff
R1 = [I0++M0]; //access fifth element in buff
R2 = [I0++M0]; //access ninth element in buff
R3 = [I0++M0]; //access second element in buff
R4 = [I0++M0]; //access sixth element in buff
R5 = [I0++M0]; //access tenth element in buff

// break here to observe first 6 accesses
R0 = [I0++M0]; //access third element in buff
R1 = [I0++M0]; //access seventh element in buff
R2 = [I0++M0]; //access eleventh element in buff
R3 = [I0++M0]; //access fourth element in buff
R4 = [I0++M0]; //access eighth element in buff
R5 = [I0++M0]; //access first element in buff

// break here to observe last 6 accesses
here: jump here; //remains in this loop when program completes

_main.end:

Modified exp5_2a.asm:

// Exp5_2
// Circular Buffer example as illustrated in Example 5.4

#include <defBF537.h>

.section L1_data_a ; //Data section begins at L1 bank A memory

.align 2; //Align data to 2 byte boundary

.byte2 buff[11] = 1,2,3,4,5,6,7,8,9,10,11; //Each data is 2 bytes

.global buff; //define buff as global variable

.global _main;

.section program ; //Program section starts from L1 instruction memory

_main:

R0 = 0; R1 = 0; R2 = 0; R3 = 0; R4 = 0; R5 = 0;//clear data registers to
0

L0 = 22; //length of circular buffer = 11*2bytes
M0 = 8; //set modifier register to 4 location (4*2bytes)

I0.L = buff; //set index register to start at buff
I0.H = buff;

B0 = I0; //set base register to start at buff

R0.L = W[I0]; //access first element in buff
I0 += M0;
R1.L = W[I0]; //access fifth element in buff
I0 += M0;

DSP Lab #2 Report © 2009 Jesse Schwartzentruber Page 4 of 5

R2.L = W[I0]; //access ninth element in buff
I0 += M0;
R3.L = W[I0]; //access second element in buff
I0 += M0;
R4.L = W[I0]; //access sixth element in buff
I0 += M0;
R5.L = W[I0]; //access tenth element in buff
I0 += M0;

// break here to observe first 6 accesses
R0.L = W[I0]; //access third element in buff
I0 += M0;
R1.L = W[I0]; //access seventh element in buff
I0 += M0;
R2.L = W[I0]; //access eleventh element in buff
I0 += M0;
R3.L = W[I0]; //access fourth element in buff
I0 += M0;
R4.L = W[I0]; //access eighth element in buf
I0 += M0;
R5.L = W[I0]; //access first element in buff
I0 += M0;

// break here to observe last 6 accesses
here: jump here; //remains in this loop when program completes

_main.end:

DSP Lab #2 Report © 2009 Jesse Schwartzentruber Page 5 of 5

	Hands-On Experiment 5.1
	Hands-On Experiment 5.2

