
eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 EETI eGTouch Programming Guide 

On Linux 
 
TABLE OF CONTENTS 

 
TABLE OF CONTENTS......................................................................................... 0 
Sec 1:  Introduction ............................................................................................ 1 
Sec 2:  Kernel Patch Guide (support kernel 3.0) .......................................... 1 

2.1  UART Interface ..................................................................................... 1 
2.1.1  kernel patch.................................................................. 1 
2.1.2  check device ................................................................ 2 

2.2  USB Interface ........................................................................................ 3 
2.2.1  kernel patch.................................................................. 3 
2.2.2 blacklist patch for [ kernel 2.6.33 and older ] ......... 4 
2.2.3 blacklist patch for [ kernel 2.6.34 and upward ] ..... 7 
2.2.4  check device ................................................................ 9 

Sec 3:  How To Install....................................................................................... 10 
3.1  Install steps ......................................................................................... 10 
3.2  Tool eGalaxCalib .................................................................................11 

Sec 4:  eGTouchd.ini Parameter Explanations ........................................... 13 
4-1  Parameter List.................................................................................... 13 
4-2  DetectRotation Note.......................................................................... 16 

Sec 5:  Touch Input Event Sequence ............................................................ 16 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 1 

Sec 1:  Introduction 
EETI eGTouch is a touch daemon driver for EETI touch controller. EETI provide different kinds 

of touch solution. Driver eGTouch supports USB & RS232 interface and is available for kernel 

3.0 upward. In addition to reporting precise points, eGTouch has extra features: 

1. Trigger RightClick and support filter constant touch. 

2. Follow Linux Multitouch-protocol which can report more than 2 points. 

3. Detect X-window rotation to map coordinate. 

4. Provide manually modify driver’s behavior. 

This document would assist you to install eGTouch and describe eGTouch feature in detail. 

 

Sec 2:  Kernel Patch Guide (support kernel 3.0) 
 

This section describes how to re-configure and patch Linux kernel to support some kernel 

features and blacklist inbuilt input driver support for EETI eGTouch daemon driver. It’s highly 

recommended to follow the steps below to re-build Linux kernel before eGTouch driver setup. 

 

2.1  UART Interface 
2.1.1  kernel patch 
Make sure Linux kernel supports EVDEV and UINPUT two kernel features. 
The users could check this by “make menuconfig” command or modify Kconfig file directly. 

For example: [menuconfig] 

a ) Path: [Device Drivers] / [Input device support] / [Event interface] 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 2 

b ) Path: [Device Drivers] / [Input device support] / [Miscellaneous devices] /  

User level driver support] 

 

 
2.1.2  check device 

1.) Try to build new kernel and reboot for some changes to take effect. 

 

2.) After boot with new kernel, the users can check whether the following issues the 

eGTouch driver required is OK or not. 

 

UINPUT device node: 

Note: There is a uinput device node created in /dev/ or /dev/input/. 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 3 

2.2 USB Interface 
 

2.2.1  kernel patch 
Make sure Linux kernel supports EVDEV, HIDRAW and UINPUT three kernel features. 

The users could check this by “make menuconfig” command or modify Kconfig file directly. 

[ Example ] for menuconfig 

a ) Path: [Device Drivers] / [Input device support] / [Event interface] 

 

b ) Path: [Device Drivers] / [HID Devices] / [/dev/hidraw raw HID device support] 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 4 

c ) Path: [Device Drivers] / [Input device support] / [Miscellaneous devices] /  

[User level driver support] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.2 blacklist patch for [ kernel 2.6.33 and older ] 
If X Server version is 1.8.7 above, you can skip this part and move to next step 1.2.4. 

( You can check version through command “ X –version” ) 
 

Patch “evdev.c”, “mousedev.c” and “joydev.c” to blacklist EETI USB touch device.  

Please follow below steps: 

 
a ) Patch "evdev.c" as below. Append the following RED code into your source code. 

static struct input_device_id evdev_blacklist[] = { /* Added by EETI */ 

{ 

 .flags = INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR, 

 .bustype = BUS_USB, 

 .vendor = 0x0EEF, 

}, 

{}, /* Terminating entry */ 

}; 

 

static struct input_handler evdev_handler = { 

 .event = evdev_event, 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 5 

 .connect = evdev_connect, 

 .disconnect = evdev_disconnect, 

 .fops = &evdev_fops, 

 .minor = EVDEV_MINOR_BASE, 

 .name = "evdev", 

 .id_table = evdev_ids, 

 .blacklist = evdev_blacklist, /* Added by EETI */ 

}; 

 

b ) Patch "mousedev.c" as below. Append the RED code below into your source code. 

static struct input_device_id mousedev_blacklist[] = { /* Added by EETI */ 

 { 

 .flags = INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR, 

 .bustype = BUS_USB, 

 .vendor = 0x0EEF, 

 }, 

 { 

 .flags = INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR, 

 .bustype = BUS_VIRTUAL, 

 .vendor = 0x0EEF, 

 }, 

 {}, /* Terminating entry */ 

}; 

static struct input_handler mousedev_handler = { 

 .event = mousedev_event, 

 .connect = mousedev_connect, 

 .disconnect = mousedev_disconnect, 

 .fops = &mousedev_fops, 

 .minor = MOUSEDEV_MINOR_BASE, 

 .name = "mousedev", 

 .id_table = mousedev_ids, 

 .blacklist = mousedev_blacklist, /* Added by EETI */ 

}; 

 

c ) Patch “joydev.c" as below. Append the RED code below into your source code. 

static const struct input_device_id joydev_blacklist[] = { 

 { 

 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 6 

 .evbit = { BIT_MASK(EV_KEY) }, 

 .keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) }, 

 }, /* Avoid itouchpads and touchscreens */ 

 { 

 .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_KEYBIT, 

 .evbit = { BIT_MASK(EV_KEY) }, 

 .keybit = { [BIT_WORD(BTN_DIGI)] = BIT_MASK(BTN_DIGI) }, 

 }, /* Avoid tablets, digitisers and similar devices */ 

 { 

 .flags = INPUT_DEVICE_ID_MATCH_BUS | INPUT_DEVICE_ID_MATCH_VENDOR, 

 .bustype = BUS_VIRTUAL, 

 .vendor = 0x0EEF, 

 }, /* Added by EETI */ 

 { } /* Terminating entry */ 

}; 

 

static struct input_handler joydev_handler = { 

 .event = joydev_event, 

 .connect = joydev_connect, 

 .disconnect = joydev_disconnect, 

 .fops = &joydev_fops, 

 .minor = JOYDEV_MINOR_BASE, 

 .name = "joydev", 

 .id_table = joydev_ids, 

 .blacklist = joydev_blacklist, 

}; 

 

 

 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 7 

2.2.3 blacklist patch for [ kernel 2.6.34 and upward ] 
If X Server version is 1.8.7 above, you can skip this part and move to next step 1.2.4. 

( You can check version through command “ X –version” ) 

 
a ) Patch "evdev.c" as below. Append the following RED code into your source code. 

static bool evdev_match(struct input_handler *handler, struct input_dev *dev) 

{ 

 /* Avoid EETI USB touchscreens */ 

 #define VID_EETI 0x0EEF 

 if ((BUS_USB == dev->id.bustype) && (VID_EETI == dev->id.vendor)) 

  return false; 

 return true; 

} 

 

static struct input_handler evdev_handler = { 

 .event = evdev_event, 

 .match = evdev_match, /* Added by EETI*/ 

 .connect = evdev_connect, 

 .disconnect = evdev_disconnect, 

 .fops = &evdev_fops, 

 .minor = EVDEV_MINOR_BASE, 

 .name = "evdev", 

 .id_table = evdev_ids, 

}; 

 

b ) Patch "mousedev.c" as below. Append the following RED code into your source 

code. 

static bool mousedev_match(struct input_handler *handler, struct input_dev *dev) 

{ 

 /* Avoid EETI USB touchscreens */ 

 #define VID_EETI 0x0EEF 

 if ((BUS_USB == dev->id.bustype) && (VID_EETI == dev->id.vendor)) 

  return false; 

 /* Avoid EETI virtual devices */ 

 if ((BUS_VIRTUAL == dev->id.bustype) && (VID_EETI == dev->id.vendor)) 

  return false; 

 return true; 

} 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 8 

static struct input_handler mousedev_handler = { 

 .event = mousedev_event, 

 .match = mousedev_match, /* Added by EETI */ 

 .connect = mousedev_connect, 

 .disconnect = ousedev_disconnect, 

 .fops = &mousedev_fops, 

 .minor = MOUSEDEV_MINOR_BASE, 

 .name = "mousedev", 

 .id_table = mousedev_ids, 

}; 

 

c ) Patch "joydev.c" as below. Append the following RED code into your source code. 

static bool joydev_match(struct input_handler *handler, struct input_dev *dev) 

{ 

 /* Avoid touchpads and touchscreens */ 

 if (test_bit(EV_KEY, dev->evbit) && test_bit(BTN_TOUCH, dev->keybit)) 

  return false; 

 /* Avoid tablets, digitisers and similar devices */ 

 if (test_bit(EV_KEY, dev->evbit) && test_bit(BTN_DIGI, dev->keybit)) 

  return false; 

 /* Avoid EETI virtual devices */ 

 #define VID_EETI 0x0EEF 

 if (( BUS_VIRTUAL == dev->id.bustype) && (VID_EETI == dev->id.vendor)) 

  return false; 

 return true; 

} 

 

static struct input_handler joydev_handler = { 

 .event = joydev_event, 

 .match = joydev_match, 

 .connect = joydev_connect, 

 .disconnect = joydev_disconnect, 

 .fops = &joydev_fops, 

 .minor = JOYDEV_MINOR_BASE, 

 .name = "joydev", 

 .id_table = joydev_ids, 

}; 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 9 

2.2.4  check device 
1.) After patching kernel, try to build new kernel and reboot for changes to take effect. 

2.) The users can plug an EETI USB touch controller in the system and check whether 

the following issues eGTouch driver required are OK or not. 

a ) HIDRAW device node:  

Note: The eGTouch driver will automatically scan and find correct device node related 

to EETI USB touch controller. 

 

b ) UINPUT device node: 

Note: There is a uinput device node created in /dev/ or /dev/input/. 

 
 

c ) USB touch device handlers: 

Note: After kernel patch, the handler should be empty as below. The information could 

be checked in /proc/bus/input/devices file. 

 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 10

Sec 3: How To Install 
 

This section describes how to install eGTouch into operating system. Before following this, 

please make sure referring to “Section 2 Kernel Patch Guide” to rebuild kernel for supporting 

necessary features. 

 
3.1  Install steps 
 
Please execute setup.sh to automatically install driver package. Through this auto-install, you 
will complete below effort: 
 
1. Decompress eGTouch package which contains: 

a ) eGTouchd: a daemon service driver for EETI touch controller. 

b ) eGTouchd.ini:   a parameter list could be loaded by driver 

c ) eGalaxCalib: calibration tool & drawing test tool 

d ) event.c:  a sample code describes how to read EETI input event. 

e ) event_multi.c:  a sample code describes how to read EETI multi-touch input event. 

 

2. Place “eGTouchd.ini” into Linux system directory “/etc/eGTouchd.ini” where driver would 

load it. We can change driver behavior by modifying this file. The detail descriptions of 

parameters are described in Section 4. ( You can see brief definitions in eGTouchd.ini ) 

 

3. Place eGTouchd & eGalaxCalib under /usr/bin. Make the OS execute eGTouchd driver at 

starting. 

 

4. After launching eGTouchd, check /proc/bus/input/devices file and we will find two virtual 

devices called “eGalaxTouch Virtual Device for Multi” and “eGalaxTouch Virtual Device for 

Single”. Information like below figure: 

 

Note: If the parameter MultiTouchEnable = 0, there would be only  

“eGalaxTouch Virtual Device for Single” 

(You can see detail description of MultiTouchEnable in Section 4) 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 11 

 

We could check event node which was assigned to the virtual device and read/get input 

event through this device node, e.g. /dev/input/eventX. 

 

3.2  Tool eGalaxCalib 
EETI provides clients with a tool called ”eGalaxCalib” which can do calibration and 

drawing test. The tool would show a utility as below: 

Note: The tool is only available for X window system. 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 12

If your touch controller doesn’t need do calibration, the calibration button would be in gray 

and not be executable. 

 
 

You could execute DrawTest to see drawing outcome. 

 
 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 13

Sec 4:  eGTouchd.ini Parameter Explanations 
 

The file eGTouchd.ini has a parameter list which would be loaded by Driver eGTouch. Driver’s 

behavior could be changed by setting up these parameters. As setting up eGTouchd.ini, 

please DON’T modify the front title. 

 

4-1  Parameter List 
This table describe the detailed usage of all parameters.  There is also a simple 

description in eGTouchd.ini. 

1. DebugEnableBits Debug message you want to show. 

0  

255 

Close all Debug [Default] 

Open all Debug 

2. ShowDebugPosition Position you want to show/store Debug message 

0 

1 

2 

<Linux> Store in file (under /tmp)     <Android> Print in logcat  [Default] 

<Linux> Print instantly in terminal   <Android> Print in logcat 

<Linux> Do both            <Android> Print in logcat 

3. RS232Baudrate Choose the BaudRate 

0 

1 

57600 bps for EETI serial ”Non-Resistive” touch controller [Default] 

9600 bps for EETI serial ”Resistive” touch controller 

4. MouseMode 

 

Touch report behavior 

0 

 

 

1 

Normal mode [Default] 

The touch reports a left button down event when it detects a touch down and a left 

button up event when it receives a lift off. 

Desktop mode 

The driver behaves similar as Normal mode, but the driver will not report mouse button 

down event immediately after user touches down. The user needs to touch and stay at 

one point for a few milliseconds, then the driver report mouse touch down event. 

5. ReportPoint The number of points you want to report  

(This is also confined by Controller) 

0 

1 

>=2 

No point 

Single-touch 

Multi-touch  [Default = 5] 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 14

 
6. MultiTouchEnable 

 

Enable: (Need kernel above 2.6.36) Follow Linux kernel 

Multitouch-protocol. This mode can report more than two points if 

controller support. 

Disable: report 2 points in max and follow mouse event protocol. 

0 

1 

Disable 

Enable [Default] 

7. DetectRotation Enable: Driver would map its coordinate corresponding to X 

window rotation. Please see 4-2 for important note. 

Disable: If there’s no roation requirement, just disable it. 

0 

1 

Disable [Default] 

Enable 

8. Direction Change the X and Y direction 

0 

1 

2 

3 

4 

Don’t make any invert [Default] 

Invert X 

Invert Y 

Invert both X and Y 

Swap X and Y 

9. Orientation Change the orientation 

0 

1 

2 

3 

0 degree [Default] 

90 degree 

180 degree 

270 degree 

10. SerialPath RS232 Serial Path 

default  

/dev/serial/ttyS0: 
Default path /dev/ttySX ( X could be equals to 0-10 ) [Default] 

Customized path. Please type in your specific serial path 

accordinating to the form. 

11. RightClick 

 

Report mouse Right Click after constant touch for a while 

0 

1 

Disable Right Click 

Enable Right Click [Default] 

RightClickDuration Constant touch duration to trigger Right Click 

X X milliseconds [Default = 1500]  

 

RightClickRange Valid area of trigger-RightClick constant touch 

X ±X range of the point would lead to constant touch for RightClick   

[Min 0 - 50 Max]  [Default = 10] 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 15

 
12. EdgeCompensate Do edge compensate 

0 

1 

Disable [Default] 

Enable 

EdgeLeft, EdgeRight 

EdgeTop, EdgeBottom 

Edge compensate value 

X 

 

If equals to 100, it means no change. 

If you set Left=50, you’ll see the left-edge points are shrinks inward. And vice versa.  

[Min 50 - 150 Max]  [Default = 100] 

13. HoldFilterEnable Filter out constant touch or not 

0 

1 

Disable 

Enable [Default] 

HoldRange Constant touch valid area 

X ±X range of the point which would lead to constant touch  

[Min 0 - 50 Max]  [Default = 10] 

14. SplitRectMode Split the display into Specific Rect. Touch would just show on the 

specific Rect. 

0 

1-8 

 

 

 

9 

No change (Full Display) [Default] 

Driver in-built split Rect 

2 1 5 

3 4 

 

6 

 
7 8 

  

Customized Rect. 

CustomRectLeft 

CustomRectRight 

CustomRectTop 

CustomRectBottom 

Theses parameters are valid as SplitRectMode=9. You can 

customize the Rect by these parameters. 

0-2047 Four sides of the customized Rect 

 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 16

4-2  DetectRotation Note 

As DetectRotation is enabled, eGTouch driver have to be executed after X-server is ready.( We 

need Xlib ). You have to remove the eGTouch execution in rc.local because it would not work 

out. Please manually put eGTouch execution in the sequence after OS’s X server is ready. 

 

We provides gdm solution since it’s a general startup. 

1. Modify the file ”Default” under /etc/gdm/Init 

2. Add eGTouch execution /usr/bin/eGTouchd at the end of file but before ”exit 0” 

3. Reboot system. 

 

Since the Xlib-ready sequence is different among diverse startup. We’re sorry that we couldn’t 

provide solution correspond to all startup. If there’s any further problem as setting up please 

contact us for technical support. 

 
 
 
Sec 5:  Touch Input Event Sequence 

 
The eGTouchd daemon sends input event through kernel feature UINPUT so that the 

client program can get these events through /dev/input/eventX. 

There are two kinds of different event sequence depending on whether the parameter 

MultiTouchEnable in eGTouchd.ini is enabled or not. 

 

Both conditions we provide a sample code to help user to show how these events happen in 

order.  

MultiTouchEnable = 0 event.c  

MultiTouchEnable = 1  [Default] event_multi.c 

 

Please compile the sample code and execute it corresponding to eGTouchd event node 

( /dev/input/eventX ). You would see the event sequence as panel is touched. 

 

1.  struct Input event ( defined in /linux/input.h ). This is the standard input event structure. 

 struct input_event { 

  struct timeval time; 

  __u16 type; 

  __u16 code; 

      __s32 value; }; 

 



eGTouch Linux Programming Guide v1.02 
                         2011/11/03 

 

 17

2.  As [ MultiTouchEnable = 1 ]  --  event_multi.c  

Event sequence would follow the Linux kernel multi-touch protocol B type. 

 ABS_MT_SLOT 0 

 ABS_MT_TRACKING_ID 0 

 ABS_MT_POSITION_X x[0] 

 ABS_MT_POSITION_Y y[0] 

 ABS_MT_SLOT 1 

 ABS_MT_TRACKING_ID 1 

 ABS_MT_POSITION_X x[1] 

 ABS_MT_POSITION_Y y[1] 

 SYN_REPORT 

You can see the detailed rule described in /Documentation/input/multi-touch-protocol.txt 

under Linux kernel source code. 

We also implement some extra events for further functions based on this architecture. 

Please compile and execute event_multi.c to see how the detailed input event sequence 

behave as multi-touch happens. 

 

 

3.  As [ MultiTouchEnable = 0 ]  --  event.c 

The sequence of input event. We would report BTN_LEFT and BTN_EXTRA here. 

Type = EV_KEY 

Code = BTN_LEFT  

Value = left mouse button state of first point,  

1: pen down / 0: life off. 

Type = EV_KEY 

Code = BTN_EXTRA  

Value = the touch state of second point,  

1: pen down / 0: lift off. 

Type = EV_ABS 

Code = ABS_X  

Value = the X axis position of first point.  

The range is from 0 to 2047. 

Type = EV_ABS 

Code = ABS_RX  

Value = the X axis position of second point.  

The range is from 0 to 2047 

Type = EV_ABS 

Code = ABS_Y  

Value = the Y axis position of first point.  

The range is from 0 to 2047. 

Type = EV_ABS 

Code = ABS_RY  

Value = the Y axis position of second point.  

The range is from 0 to 2047. 

Type = EV_SYNC 

Code = SYN_REPORT 

Value = 0 

A Sync report event, all data will be valid after this event is received. 

 


