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SUMMARY

Dislocation creep, which is the dominant deformation medra in the upper mantle, results
in a non-Newtonian anisotropic rheology. The implicatidnnon-Newtonian rheology has
been quite extensively studied in geodynamic models bunisotropic aspect remains poorly
investigated. In this paper we propose to fill this gap by finoducing a simple mathematical
description of anisotropic viscosity and (2) illustratitige link between plastic crystal defor-
mation and bulk material rheology. The study relies on tighést symmetry of the anisotropic
tensor, a cubic symmetry, for which anisotropy is charaterby one parameter only, First
order implications of anisotropy are quantitatively explb as a function of. The effective
rheology of the material is described as a function of therddtion of the crystals and of
the imposed stress and the validity of the isotropic appnaxion is discussed. The model,
applied to ringwoodite, a cubic crystal with spinel-typeusture, predicts that the dynamics
of the transition zone in the Earth’s mantle is going to bergjty affected by mechanical

anisotropy.
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1 INTRODUCTION

Modeling of solid state convection in the Earth mantle eba a continuous medium description
of the material properties. In the lower mantle, defornrataccommodated by diffusion creep
which results in a Newtonian rheology. Classically, a Newaonmheology has been used to model
convection in the upper mantle as well. The influence of weriparameters on the viscosity,
such as temperature or grain size has been fully studied Devpille & Jaupart 1994; Hall &
Parmentier 2003). However, geodynamic models based onddewt rheology have not been
able to self-consistently generate a plate like convectgame. Plate tectonics requires indeed a
specific rheology that localizes deformation (Bercovici 20@uch as for example pseudo-plastic
yielding (e.g. Tackley 2000) or a damage rheology (Berco&i®icard 2005). The question of
the generation of plate tectonics thus boils down to theatttarization of the effective rheology
of the upper mantle.

Deformation in the upper mantle is mainly accommodated biodation creep which corre-
sponds to a stress-dependent non-Newtonian rheologydfarore, as deformation at the crystal
scale occurs on specific glide planes and along specifictdins; it depends on the orientation
of the crystal, which corresponds to an anisotropic rhepl®fe implications of stress dependent
viscosity have been quite fully investigated (e.g. Tackle90; Ogawa 2003). On the other hand,
general consequences of anisotropic viscosity have not &@gaored yet. A few studies (Richter
& Daly 1978; Saito & Abe 1984; Honda 1986) have focused on thglications of anisotropic
rheology for a hexagonal medium and have shown that anptioanges the value of the critical
parameters for the onset of convection. Christensen (198diesl the effect of anisotropic viscos-
ity on both finite amplitude convection and post glacial netah. He concluded that these effects
were small in both situations. However these conclusiongweétained for a two-dimensional
medium which does not encompass all the potential effecéisbtropy which by definition are
fully tri-dimensional. In a three dimensional modeling afsp glacial rebound for a transversaly
isotropic upper mantle, Han & Wahr (1997) found indeed samfiaeénce of anisotropy on the rate
of horizontal motion.

In this article, we introduce a complete but simple mathé&ahtescription of anisotropic
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viscosity that goes beyond the restrictions of a two-dinwra formulation. We use a simple
medium with cubic symmetry, in which anisotropy is a funotaf one parameter only. We quan-
titatively investigate the first order implications of amti©py and study its relationship with the

plastic deformation of the crystals.

2 MATHEMATICAL FRAMEWORK

Viscosity describes the internal resistance of a fluid to floman isotropic Newtonian fluid, the

relationship between the stress tens@nd the strain rate tensérs given by

. 2 .
Oij = 2p€55 + <K - 3M) Oij€kk; 1)
wherey is the dynamic viscosity (that gives the resistance to gleeat X' the bulk viscosity (that

controls the rate of volume change). The relationship besomore general for an anisotropic

fluid and is given by
Tij = Nijki€kls (2)

wheren;;; represents the 81 components of a fourth order viscosigoteDue to the symmetry
of 0;; andé,;, and to the conservation of energy, only 21 components,pf are independent
(Landau & Lifchitz 1986). These symmetry properties allomedo reformulate the constitutive

equation (2) using a second order tensor in a 6D space (Mathir&Cowin 1990; Helbig 1994),
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or in compact notation,
o1 =1n1s€y, 4)

with [ = id;;+(1—9;;)(9—i—j) and.J = kéy + (1 — ) (9—k —1). This formulation is known as

the Kelvin notation, which offers the advantage of havirggghme mathematical properties as the
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initial fourth order tensor (hence thg2 factor). Due to additional crystallographic symmetries,
the number of independent parameterscan be further reduced. An orthorhombic medium will
be described by 9 independent components for example. lioilbe/ing, we will focus on cubic
symmetry because its anisotropy is defined by only one paearard still illustrates the general
consequences of an anisotropic rheology.

The tensor describing a given anisotropic mediymn can be expressed as the sum of two

contributions, an isotropic ong*’ and an anisotropic perturbatidxf”s,
nry =y + A7 (5)
The isotropic tensor writes as :

i Mmi1— "4 M1—nNww 0 0 0
M1 — N4 M1 mi—mna 0 0 0

M1 — Naa N1 — Naa M1 0O 0 0

e = : (6)
0 0 0 ma 0 0
0 0 0 0 nu O
0 0 0 0 0 7aa

This tensor has only two independent componepntsandn,,, that can be related to the shear and
bulk viscosities (defined in constitutive equation (1)),usmng the expression of the eigenvalues

of the tensor,

A= 3 — 2ny = 3K, (7)
)\2,3,4,5,6 = N = 2/, (8)
which yields

K+3u K—24 K—24 0 0 0

i = ’ ’ ’ . ©)

0 0 0 0 0 2u
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A general cubic perturbation of this tensor will write as
41 03 03 0 0 O
b3 01 93 0 0 O
Aeubic _ b3 03 o1 0 0 O | (10)
0 0 0 66 0 O

0 0 0 0 d O

0 0 0 0 0 6

where/; is the perturbation of1, d is the perturbation of,; andds is the perturbation ofj;,.
The three perturbation coefficients are linked by two plglstonstrains. First, the trace of the
perturbation which is rotation-invariant representsstsriopic contribution and has to be zero, i.e.
01 = —d. Second, the perturbed tensor has to keep the same resistaisotropic compression

as the isotropic reference tensor, i.e. the same f—,'atiwvhich yields
3K + 601 + 203 = 3K, (11)

or 0; = —203. The resulting cubic tensor can be expressed as a functioneo&nisotropy param-
eter only,0 = n11 — a4 — M2 = —53d3 (equal to 0 for an isotropic medium), and the two isotropic

parametersy and i,

K+ip+25 K—32u—16 K—2u—15 0 0 0
2 1 4 2 2 1
et = :
0 0 0 2u—2%5 0 0
0 0 0 0 2u—25 0
0 0 0 0 0  2u—2%5

This expression is similar to the one obtained by Browaey8%ph the case of a cubic elastic
tensor, based on the decomposition method (Browaeys & Ch@@t; Mehrabadi & Cowin
1990).

For a deviatoric stress tensor, the deformation is incosgiioée, and one can write, e.g. for,

4 2\ . 2 1 . .
o = (K+gpt o)t (K- Sp-20)(a+i), (13)
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3
= <2M + 55) 6.1,

usingé; + é; + é3 = 0. Doing the same fo#, andos, one obtains

2u+25 0 0 0 0 0
0 2u+20 0 0 0 0
e _ 0 0  2u+326 0 0 0 | 1)
0 0 0 2u—25 0 0
0 0 0 0 2u—25 0
0 0 0 0 0 2p — 20
where K is not a parameter anymore. The eigenvalues of tiseit@ne
Mos = 25 + 24, (15)
Mss = 2042, (16)

Because viscous dissipation is positive, these eigenvailussbe positive. This defines the stabil-

ity domain for the tensor and the corresponding range offsiabée values fod:

10 9
—— < — <5 a7
3w

We can now investigate the implications of anisotropic @ty as a function of /..

3 IMPLICATIONSOF ANISOTROPIC VISCOSITY
3.1 Nominal anisotropy of a cubic medium

The value of the cubic perturbatiércan first be used to define a nominal percentage of anisotropy
of the material A. To do so, we use the ratio of the norm of the cubic perturbagosor to the
total tensor (isotropic contribution + cubic perturbajiohhe resulting expression fax depends

only ond/u and is given by

total is0

077 — 7l _ (0/1)?
Al OOJ 200 + 20(0/p) + 13(5/1)? (18)

We show in figure 1 the percentage of anisotrapyas a function ofé/x.. The percentage of

A =100

anisotropy depends on the sign of the perturbation, and peceed, is larger for larger values

of |§/p|. By definition A cannot exceed 100%, and, because of the stability condigomn by
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Figure 1. Percentage of anisotrogy as a function of the cubic perturbatiop.

equation 17, is at most equal to 72% &gp.=—10/3 andd/u=5. These large numbers suggest that

the anisotropic perturbation may have a significant effeai@formation, as illustrated below.

3.2 Degree of anisotropy and approximate isotropic r heology

In geodynamics, two major kinds of deformation are encaeaiteViscosity estimates are made
from post glacial rebound, which can be approximated by & ghear, whereas simple shear is
dominant in convective flows. Under the isotropic hypothetie same value of viscosity will
be relevant for these two kinds of deformations. We evaltlagevalidity of this hypothesis as a
function of the anisotropic perturbatiori ., by looking for the isotropic medium that best fits the

actual deformation of the cubic medium. To do so, we minintieeerror defined by:

. 100\] (é?tbic _ é%so)(éﬁubic _ é%so) (19)

é?‘bicé?‘bic ’
wherec§ i is the actual strain rate tensor aifit is the strain rate tensor for the isotropic medium.
The minimization ofy provides an “effective” shear viscosipys for the isotropic medium and

an estimation of the error introduced by the isotropic apination, .
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Pure shear

ueff/ H

Figure 2. Effective dimensionless viscosity.s /1 of the isotropic medium that best fits the deformation
of the cubic material as a function 6f .. The solid and dashed lines correspond to pure shear and simple
shear stress respectively. The gray region corresponds to thefaasgwoodite discussed in section 4.2.

If the stress principal directions are aligned with the talfsgraphic axes, the result can be

analytically expressed as, for pure shear= (—1/2,-1/2,1,0,0,0)T),

Heft o 3
n TO<6/M)+1’ (20)

and for simple sheaw = (0,0,0,0,0,v/2)7),

Heft o

L6/ 1 @1
We represent the value of the isotropic viscosity as a fonaif § /. in figure 2.

For pure shear, the best isotropic medium reproduces gxaetlactual deformationg = 0
in equation 19). However, the effective viscosity of thistispic medium is a function of /.
For positive values of /. the equivalent isotropic medium is only a bit stiffer thae tieference
isotropic medium that corresponds ddu = 0. For negative values af/p on the other hand,
the medium becomes very soft. Rty = —3 the effective viscosity is one order of magnitude
softer than the reference isotropic medium. Close to themahvalue o5 /1. the medium becomes
infinitely deformable (no resistance to stress). Note thiatresult does not imply that the viscosity

tensor tends to the null tensor, but only that the coeffisi@ftviscosity excited by the imposed

stress (the three upper diagonal coefficients) tend to 2¢rine maximum positive value a¥/u
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the three lower right diagonal coefficients tend also to Zaubthey are not excited by the imposed
stress and thus do not affect the effective viscosity.

For simple shear, the behavior of the cubic medium can alsexaetly reproduced using the
isotropic effective viscosityy(, = 0). Ford/u < 0, the medium is a bit stiffer than the reference
isotropic medium, whereas it can become very softfor > 0. Here again, whefi/ . reaches the
upper boundary of the stability domain, the medium preseateesistance to stress because the
three lower right components of the tensor tend to 0. At theefdooundary of the stability domain,
the three upper right components of viscosity also tend tatGabe not excited by the imposed
stress and thus do not affect the effective viscosity. Whempaoing the two viscosities predicted
in figure 2, one notes that the consequences of anisotropyppa@site for the two deformations
for positive (negative)/u: the pure shear sees a stiffer (softer) medium whereas #& stress
sees a softer (stiffer) medium. A ratio of 10 and 0.1 betwéertwo effective viscosities is found
for o/u = 3.91 andd/u = —2.81, respectively. This suggests that using viscosity esgnhat
from pure shear (e.g. post-glacial rebound) to model therd®ition of the medium subject to a
simple shear (e.g. convection) may introduce strong biasthl¥s do not confirm the conclusion
of Christensen (1987) that mechanical anisotropy has a dewrder effect only. This discrepancy
is related to the difference between our 3D formalism andstdmsen’s 2D approach valid only
for a layered medium. Our results are closer to the conalusiddan & Wahr (1997) based also

on a 3D modeling.

3.3 Theeffect of arbitrary orientations

The results become more complex than presented above ifitih@gal axes of the stress tensor
are not aligned with the crystallographic axes. To illugttthe influence of the orientation of the
crystal, we consider a cubic medium vertically tilted by augla 0 and rotated by an angtein
the horizontal plane. For the sake of the argument, we takébi enedium withd /. = 2, i.e.
an anisotropy ofA=44%. From equation 19 we determine the isotropic viscasify best fits
the actual deformation (effective viscosity) and the asged error as a function @f and¢, for

simple shear. Results displayed in figure 3 show that theteféecalue of viscosity is not much
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Figure 3. Isocontours of the ratio between the effective viscosity and the rafengacosity, as a function

of # and¢, for pure shear.
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Figure4. Isocontours ofyg, the difference between the actual strain rate tensor and the one oljtaittesl
best fitting isotropic medium, for pure shear.

affected by the orientation of the crystal (less than a fa2Zfpand is thus mainly controlled by the
value ofd /. However, the errors introduced by the isotropic approxioma plotted on figure 4,
show that there is usually no equivalent isotropic mediura totated cubic medium, except for
specific orientations. The large errors come from the faatt thecause of the coupling induced by

the anisotropic viscosity coefficients, the principal agésleformation are not aligned anymore
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Figure5. Angle in degree® between the direction of maximum extension rate and-tteection, for pure

shear.

with the principal axes of the stress tensor. To explore pbisit, we plot on figure 5 the angle
between the vertical axis and the direction of maximal esitemrate. As this angle is usually non
zero, the directions of the principal axes of the strairpstlid cannot be used to infer directly the
orientation of principal axes of the stress, for an anigoranedium. The isotropic approximation
thus generally introduces error both in the values of therstiate and in the inferred directions of
eigenvectors of the strain rate tensor.

We have described in this section the effects of anisotreigimosity for theoretical mediums
characterized by an arbitrary value of the cubic pertudnatf ... In the next section we show how

the value ob /i can be related to the mechanical parameters of a cubic trysta

4 FROM DISLOCATION CREEP TO ANISOTROPIC VISCOSITY TENSOR
4.1 Didocation creep in cubic crystals

Plastic deformation in a crystal is a function of the acyivéind orientation of prescribed slip
systems (e.g. Poirier 1985), and five independent actipesgitems are required to accommodate
an arbitrary deformation (Von Mises’ criterion). To defineamonical cubic crystal that fulfills the

\Von Mises’ criterion, we consider a FCC crystal with two faiesl of slip planes characterized by
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two different critical resolved shear stress (CRSS). Thefarsily of slip systems corresponds to
(111)[110] with CRSSr; (4 planes with 3 slip directions = 12 slip systems) and thesédamily
corresponds to (001)L0] with CRSSr¢ (3 planes with 2 slip directions = 6 slip systems). The
plastic deformation of the crystal is given by (e.g. Kamir&Ribe 2001)

18 n—1 o lsns
€ij =260y PIP 4 15ns (22)
s=1

5 A
wherel®* andn® are unit vectors in the slip direction and normal to the slgnp of the slip system

s

S
apqlpnq

e

s, respectively. The stress exponenis usually larger than 1 for dislocation creep, but we focus
here on anisotropic effects and we will keepl for the sake of the argument. Equation 22 can be

rewritten as

é[ ()
S =g 2L 23
éO 1J 7_& ) ( )
with S*, the dimensionless compliance tensor, given by

6 00 O 0 0

06 0 0 0 0

L 9006 0 0 0

S (24)

6 3| g 2 o |

T

000 o 32 9

T

000 0 0 2

T

with 7% = :—‘? The expressions of the isotropic viscosity and of the cpleiturbation parameter
0

d/p are found by comparison with equation 14:

34+ 117" T&
_ T 25
= 0@ 124 (29)
§  5(—Ar+3) (26)
w3411

The value ofd/;. as a function ofr* is shown in figure 6, where one can see that the limit of
stability is reached when* — 0 (§/1 = 5) whereas an isotropic behavior is found fd=3/4.
The minimal value i$ /. = —20/11 which falls within the stability domain.

Some geological materials present a cubic symmetry andeameichanically described using

a FCC model, for example halite and spinel-type ringwooditee first material is relevant for
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Figure 6. Value of the cubic perturbatio¥y i as a function of the ratio of the critical resolved shear stresses
7*in a FCC crystal.

the dynamics of salt diapirs whereas the second one is reléwvathe dynamics of the transition
zone. In these two minerals, the (11M)p] family of slip systems is softer than the second fam-
ily (001)[110] at room conditions and under high pressure (10 GPa),wyigds a value of-*
between 2 and 10 (Lebensohn et al. 2003; Wenk et al. 2005; Latred. 2006), ob /1. between

-1 and -1.64. At the high temperature and pressure conditibthe transition zone (1800 K, 20
GPa), potential slip systems will tend to have similar catiresolved shear stress (Wenk et al.
2005), and a value of*=1 can be used as a lower boundgp. = —0.35, which yields a total
range of—1.64 < §/u < —0.35. The results from the preceding section show that the valties
5/ for geologically relevant crystals fall in a range in whiahisotropy has some major effects
(see Figure 2). First the effective viscosity is going to erection of the geometry of the imposed
stress and second if the crystals are not perfectly alignédtie principal direction of stress, an

additional rotation of the strain ellipsoid will be inducky anisotropic coupling.

4.2 Thecase of aringwoodite polycrystal : implications of the lattice preferred orientation

The previous conclusions were obtained for a single crgstdiwe illustrate here how they change
for a polycrystal. The anisotropic viscosity of a polycgiBhe aggregate is a function both the
anisotrotropic tensor of the single crystal and the diatidn of orientation of the crystals. There

is different ways of averaging crystal properties in an aggte, the two end-members being the
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Figure 7. Anisotropy parameteA* for ringwoodite polycrystal for extremal values &f ., as a function
of dispersion (left y-axis). We also present for reference the elast&otropy as a function of disperions
(solid line, right y-axis).

Voigt average (homogeneous strain rate) and the Reuss avgraignogeneous stress). The Voigt

average is defined by

1 N
NWoigt = 7+ Z n;ja (27)
! N v=1 !
whereN the number of crystals ang}; the viscosity tensor for crystal, depending on the orien-

tation of the crystal ; the Reuss average is defined by

_1 1 Y -1
NReuss = 77 Z (771‘]‘) : (28)

v=1

For a uniform distribution of crystal orientation, the potystal will be equivalent to an isotropic
medium. Using a Voigt average, the cubic perturbation vahael out and the resulting viscosity
will be the isotropic part of the single crystal viscositynser. As the Reuss average is based
on compliance instead of viscosity, the cubic perturbataihnot cancel out and the isotropic
viscosity will depend o /u.. Only the Voigt average is thus fully consistent with oumfiadism,
whereas the Reuss average would require to define a comppartcebation instead of a viscosity
perturbation. A detailed discussion of the averaging ptaoe is beyond the scope of this article
but, nevertheless, we checked that its influence on thetsga@sented below is small.

We use a lattice preferred orientation (LPO) uniformly wlstted on a domaing; = [0, dr],
cos(f) = [1 — 2d, 1], = [0, dr]) where¢, 0, ¢, are Euler angles andis a dispersion parameter
between 0 and 1. Fat = 1, the distribution is uniform over the whole Eulerian spaoe ¢he

medium is isotropic. Fod — 0, the distribution becomes sharper and the polycrystal theso
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equivalent to a single crystal. The reference isotropisaerns thus now defined by = 1. As
in section 2 we introduce an anisotropy parameter to quatité difference between the actual

polycrystal tensor and the isotropic polycrystal tensoe(1),

_d=1
Inz.sl

This parameter is shown on figure 7 for the two extreme valtiég;ofor ringwoodite. For — 1,
A* — 0 as the medium becomes isotropic, whereasifer 0, A* — A corresponding to the
monocrystal. We can see that a low seismic anisotropy (2¥¢sponds to a sharp LPO and will
produce a significant anisotropic mechanical behaviohétollowing, we explore this effect for
three stress conditions and for various LPO dispersiompeierd.

We apply a simple shear, a pure shear and a combined stresd, —1,0,0,0,v/2)” on the
polycrystal, using/u = —1.64 andd/u = —0.35. For each case, we determine both the effec-
tive viscosity . and the associated errgp corresponding to the best fitting isotropic medium.
Two main results are shown on figure 8. First, the effectigeasity of the polycrystal depends
weakly ond, which means that the aggregate viscosity is primarily &tion of the monocrystal
anisotropy. Second, the isotropic approximation intr@duggnificant errors faf < 0.5 and is not
valid, especially for /i = —1.64. These errors are complex functionsdihecause the medium
does not display any particular symmetry tbe£ 0 andd # 1. In general there is no isotropic
medium that matches exactly the deformation and the efegiscosity depends weakly on the
stress configuration.

The previous results bear some implications for the mechhproperties of the transition
zone. These properties are going to be a functiof/pffor ringwoodite as discussed above and
of lattice preferred orientation/]. Seismic anisotropy in the transition zone is weak but neayb
as large as 2% (Trampert & van Heijst 2002). This value candeel o estimate the value of
from the elastic tensor of the monocrystal. As the elastisaropy of a ringwoodite monocrystal
is also small (about 3% Karki et al. 2001), it implies quiteharp LPO of ringwoodite in the
transition zone (see figure 7). We can thus conclude thath&elogy of the transition zone is
significantly anisotropic. As a consequence a slab goingutiit and a plume spreading under

the transition zone will not see the same effective mediuanthiermore, seismic anisotropy is
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a) 15 50

Figure 8. Effect of lattice preferred orientation on effective viscosity. a) Valiithe effective viscosity
Lot /1 @and of the error, for simple shear as a function of the LPO dispersioh) Same for a combined
stress defined by = (1,—1,0,0,0,v/2)7. c) Same for a pure shear. The solid line corresponds fio=
—1.64 and the dashed line &/ = —0.35.

laterally heterogeneous in the transition zone which iegpélso mechanical heterogeneities that

may affect the strength and geometry of the convective floauidph the transition zone.



Anisotropic rheology 17
5 CONCLUSION

The description of anisotropic viscosity using a fourtklertensor can be simply formalised based
on tensor perturbation in a 6 dimensional space. This tgciemapplied to the cubic symmetry al-
lows a straightforward exploration of the range of effedtsubic anisotropic viscosity. Unlike in
the previous study of Christensen (1987) based on a layerdadimewe found here that mechan-
ical anisotropy is potentially important. The main effexthat the effective viscosity for a given
medium does depend on the geometry of the applied streshanthéere is no unique isotropic
medium that can reproduce the complex behaviour of an anEotmedium.

Misalignment between the principal axes of the viscosibste and that of the applied stress
also modifies the effective viscosity compared to the aligoase and, additionnally, gives the
strain rate tensor axes still another direction. In thisagibn, the actual strain rate cannot be
obtained by any equivalent isotropic medium.

The viscosity estimated for a given geodynamical procdss plost-glacial rebound, may not
be valid for another, like convection, even without menitignothers complexities like timescale-
or temperature-dependent viscosity (eégdek & Fleitout 2003).

Cubic symmetry is the highest anisotropic symmetry and folyb@presents a lower bound
of the range of effect of mechanical anisotropy. The methedave presented can be used to in-
vestigate the anisotropy of more complex crystals. Thescdption can however become tedious
beyond the hexagonal symmetry which is still tractables@hindependent anisotropy parameters
instead of one here). Furthermore, natural polycrystalsnet always be described by simple
viscosity symmetry and will result in a more complex behavjoncluding potential feedback
between LPO development and effective viscosity (Muhlretus. 2004). The case of ringwood-
ite in the transition zone explored above provides an exaroplthe richness of real systems.
Deciphering these effects in geodynamical observatidesgdost-glacial rebounds or small-scale
convection is challenging and the link between seismic aadhanical anisotropy mainly remains
to be explored (e.g. Moresi & Muhlhaus 2006). However, oumialism is simple enough to be
straightforwardly included in numerical codes used to nhodavection in planetary mantles. The

development of LPO in mantle flow makes the effective vidgasensitive to the type and orienta-
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tion of stress. This mechanism might contribute to the wegilgenecessary for mantle convection

to evolve in a plate tectonics regime.
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