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Received 2006 ...; in original form 2006 ...

SUMMARY

Dislocation creep, which is the dominant deformation mechanism in the upper mantle, results

in a non-Newtonian anisotropic rheology. The implication of non-Newtonian rheology has

been quite extensively studied in geodynamic models but theanisotropic aspect remains poorly

investigated. In this paper we propose to fill this gap by (1) introducing a simple mathematical

description of anisotropic viscosity and (2) illustratingthe link between plastic crystal defor-

mation and bulk material rheology. The study relies on the highest symmetry of the anisotropic

tensor, a cubic symmetry, for which anisotropy is characterized by one parameter only,δ. First

order implications of anisotropy are quantitatively explored as a function ofδ. The effective

rheology of the material is described as a function of the orientation of the crystals and of

the imposed stress and the validity of the isotropic approximation is discussed. The model,

applied to ringwoodite, a cubic crystal with spinel-type structure, predicts that the dynamics

of the transition zone in the Earth’s mantle is going to be strongly affected by mechanical

anisotropy.

Key words: Dislocation creep – anisotropic rheology – geophysical materials – mantle con-

vection.
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1 INTRODUCTION

Modeling of solid state convection in the Earth mantle relies on a continuous medium description

of the material properties. In the lower mantle, deformation is accommodated by diffusion creep

which results in a Newtonian rheology. Classically, a Newtonian rheology has been used to model

convection in the upper mantle as well. The influence of various parameters on the viscosity,

such as temperature or grain size has been fully studied (e.g. Davaille & Jaupart 1994; Hall &

Parmentier 2003). However, geodynamic models based on Newtonian rheology have not been

able to self-consistently generate a plate like convectiveregime. Plate tectonics requires indeed a

specific rheology that localizes deformation (Bercovici 2003), such as for example pseudo-plastic

yielding (e.g. Tackley 2000) or a damage rheology (Bercovici& Ricard 2005). The question of

the generation of plate tectonics thus boils down to the characterization of the effective rheology

of the upper mantle.

Deformation in the upper mantle is mainly accommodated by dislocation creep which corre-

sponds to a stress-dependent non-Newtonian rheology. Furthermore, as deformation at the crystal

scale occurs on specific glide planes and along specific directions, it depends on the orientation

of the crystal, which corresponds to an anisotropic rheology. The implications of stress dependent

viscosity have been quite fully investigated (e.g. Tackley2000; Ogawa 2003). On the other hand,

general consequences of anisotropic viscosity have not been explored yet. A few studies (Richter

& Daly 1978; Saito & Abe 1984; Honda 1986) have focused on the implications of anisotropic

rheology for a hexagonal medium and have shown that anisotropy changes the value of the critical

parameters for the onset of convection. Christensen (1987) studied the effect of anisotropic viscos-

ity on both finite amplitude convection and post glacial rebound. He concluded that these effects

were small in both situations. However these conclusions were obtained for a two-dimensional

medium which does not encompass all the potential effects ofanisotropy which by definition are

fully tri-dimensional. In a three dimensional modeling of post glacial rebound for a transversaly

isotropic upper mantle, Han & Wahr (1997) found indeed some influence of anisotropy on the rate

of horizontal motion.

In this article, we introduce a complete but simple mathematical description of anisotropic
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viscosity that goes beyond the restrictions of a two-dimensional formulation. We use a simple

medium with cubic symmetry, in which anisotropy is a function of one parameter only. We quan-

titatively investigate the first order implications of anisotropy and study its relationship with the

plastic deformation of the crystals.

2 MATHEMATICAL FRAMEWORK

Viscosity describes the internal resistance of a fluid to flow. In an isotropic Newtonian fluid, the

relationship between the stress tensorσ and the strain rate tensorǫ̇ is given by

σij = 2µǫ̇ij +
(

K − 2

3
µ

)

δij ǫ̇kk, (1)

whereµ is the dynamic viscosity (that gives the resistance to shear) andK the bulk viscosity (that

controls the rate of volume change). The relationship becomes more general for an anisotropic

fluid and is given by

σij = ηijklǫ̇kl, (2)

whereηijkl represents the 81 components of a fourth order viscosity tensor. Due to the symmetry

of σij and ǫ̇kl, and to the conservation of energy, only 21 components pfηijkl are independent

(Landau & Lifchitz 1986). These symmetry properties allow one to reformulate the constitutive

equation (2) using a second order tensor in a 6D space (Mehrabadi & Cowin 1990; Helbig 1994),
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, (3)

or in compact notation,

σI = ηIJ ǫ̇J , (4)

with I = iδij +(1−δij)(9−i−j) andJ = kδkl+(1−δkl)(9−k−l). This formulation is known as

the Kelvin notation, which offers the advantage of having the same mathematical properties as the
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initial fourth order tensor (hence the
√

2 factor). Due to additional crystallographic symmetries,

the number of independent parametersηIJ can be further reduced. An orthorhombic medium will

be described by 9 independent components for example. In thefollowing, we will focus on cubic

symmetry because its anisotropy is defined by only one parameter and still illustrates the general

consequences of an anisotropic rheology.

The tensor describing a given anisotropic mediumηIJ can be expressed as the sum of two

contributions, an isotropic oneηiso
IJ and an anisotropic perturbation∆aniso

IJ ,

ηIJ = ηiso
IJ + ∆aniso

IJ . (5)

The isotropic tensor writes as :
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This tensor has only two independent components,η11 andη44, that can be related to the shear and

bulk viscosities (defined in constitutive equation (1)), byusing the expression of the eigenvalues

of the tensor,

λ1 = 3η11 − 2η44 = 3K, (7)

λ2,3,4,5,6 = η44 = 2µ, (8)

which yields
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A general cubic perturbation of this tensor will write as

∆cubic =
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whereδ1 is the perturbation ofη11, δ2 is the perturbation ofη44 andδ3 is the perturbation ofη12.

The three perturbation coefficients are linked by two physical constrains. First, the trace of the

perturbation which is rotation-invariant represents its isotropic contribution and has to be zero, i.e.

δ1 = −δ2. Second, the perturbed tensor has to keep the same resistance to isotropic compression

as the isotropic reference tensor, i.e. the same ratioǫ̇ii

σii

, which yields

3K + δ1 + 2δ3 = 3K, (11)

or δ1 = −2δ3. The resulting cubic tensor can be expressed as a function ofone anisotropy param-

eter only,δ = η11 − η44 − η12 = −5δ3 (equal to 0 for an isotropic medium), and the two isotropic

parameters,µ andK,
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This expression is similar to the one obtained by Browaeys (2005) in the case of a cubic elastic

tensor, based on the decomposition method (Browaeys & Chevrot2004; Mehrabadi & Cowin

1990).

For a deviatoric stress tensor, the deformation is incompressible, and one can write, e.g. forσ1,

σ1 =
(

K +
4

3
µ +

2

5
δ
)

ǫ̇1 +
(

K − 2

3
µ − 1

5
δ
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(ǫ̇2 + ǫ̇3) , (13)
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=
(
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δ
)

ǫ̇1,

usingǫ̇1 + ǫ̇2 + ǫ̇3 = 0. Doing the same forσ2 andσ3, one obtains

ηcubic =
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where K is not a parameter anymore. The eigenvalues of the tensor are

λ1,2,3 =
3

5
δ + 2µ, (15)

λ4,5,6 = −2

5
δ + 2µ, (16)

Because viscous dissipation is positive, these eigenvaluesmust be positive. This defines the stabil-

ity domain for the tensor and the corresponding range of acceptable values forδ:

−10

3
<

δ

µ
< 5. (17)

We can now investigate the implications of anisotropic viscosity as a function ofδ/µ.

3 IMPLICATIONS OF ANISOTROPIC VISCOSITY

3.1 Nominal anisotropy of a cubic medium

The value of the cubic perturbationδ can first be used to define a nominal percentage of anisotropy

of the material,∆. To do so, we use the ratio of the norm of the cubic perturbation tensor to the

total tensor (isotropic contribution + cubic perturbation). The resulting expression for∆ depends

only onδ/µ and is given by

∆ = 100
‖ηtotal

IJ − ηiso
IJ ‖

‖ηtotal
IJ ‖ = 100

√

√

√

√

(δ/µ)2

200 + 20(δ/µ) + 13(δ/µ)2
. (18)

We show in figure 1 the percentage of anisotropy∆ as a function ofδ/µ. The percentage of

anisotropy depends on the sign of the perturbation, and as expected, is larger for larger values

of |δ/µ|. By definition∆ cannot exceed 100%, and, because of the stability conditions given by
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Figure 1. Percentage of anisotropy∆ as a function of the cubic perturbationδ/µ.

equation 17, is at most equal to 72% forδ/µ=−10/3 andδ/µ=5. These large numbers suggest that

the anisotropic perturbation may have a significant effect on deformation, as illustrated below.

3.2 Degree of anisotropy and approximate isotropic rheology

In geodynamics, two major kinds of deformation are encountered. Viscosity estimates are made

from post glacial rebound, which can be approximated by a pure shear, whereas simple shear is

dominant in convective flows. Under the isotropic hypothesis, the same value of viscosity will

be relevant for these two kinds of deformations. We evaluatethe validity of this hypothesis as a

function of the anisotropic perturbationδ/µ, by looking for the isotropic medium that best fits the

actual deformation of the cubic medium. To do so, we minimizethe error defined by:

χ = 100

√

√

√

√

(ǫ̇cubic
I − ǫ̇iso

I )(ǫ̇cubic
I − ǫ̇iso

I )

ǫ̇cubic
I ǫ̇cubic

I

, (19)

whereǫ̇cubic
I is the actual strain rate tensor andǫ̇iso

I is the strain rate tensor for the isotropic medium.

The minimization ofχ provides an “effective” shear viscosityµeff for the isotropic medium and

an estimation of the error introduced by the isotropic approximation,χ0.
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Figure 2. Effective dimensionless viscosityµeff/µ of the isotropic medium that best fits the deformation

of the cubic material as a function ofδ/µ. The solid and dashed lines correspond to pure shear and simple

shear stress respectively. The gray region corresponds to the caseof ringwoodite discussed in section 4.2.

If the stress principal directions are aligned with the crystallographic axes, the result can be

analytically expressed as, for pure shear(σ = (−1/2,−1/2, 1, 0, 0, 0)T ),

µeff

µ
=

3

10
(δ/µ) + 1, (20)

and for simple shear(σ = (0, 0, 0, 0, 0,
√

2)T ),

µeff

µ
= −1

5
(δ/µ) + 1. (21)

We represent the value of the isotropic viscosity as a function of δ/µ in figure 2.

For pure shear, the best isotropic medium reproduces exactly the actual deformation (χ0 = 0

in equation 19). However, the effective viscosity of this isotropic medium is a function ofδ/µ.

For positive values ofδ/µ the equivalent isotropic medium is only a bit stiffer than the reference

isotropic medium that corresponds toδ/µ = 0. For negative values ofδ/µ on the other hand,

the medium becomes very soft. Forδ/µ = −3 the effective viscosity is one order of magnitude

softer than the reference isotropic medium. Close to the minimal value ofδ/µ the medium becomes

infinitely deformable (no resistance to stress). Note that this result does not imply that the viscosity

tensor tends to the null tensor, but only that the coefficients of viscosity excited by the imposed

stress (the three upper diagonal coefficients) tend to zero.At the maximum positive value ofδ/µ
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the three lower right diagonal coefficients tend also to zero, but they are not excited by the imposed

stress and thus do not affect the effective viscosity.

For simple shear, the behavior of the cubic medium can also beexactly reproduced using the

isotropic effective viscosity (χ0 = 0). For δ/µ < 0, the medium is a bit stiffer than the reference

isotropic medium, whereas it can become very soft forδ/µ > 0. Here again, whenδ/µ reaches the

upper boundary of the stability domain, the medium presentsno resistance to stress because the

three lower right components of the tensor tend to 0. At the lower boundary of the stability domain,

the three upper right components of viscosity also tend to 0 but are not excited by the imposed

stress and thus do not affect the effective viscosity. When comparing the two viscosities predicted

in figure 2, one notes that the consequences of anisotropy areopposite for the two deformations

for positive (negative)δ/µ: the pure shear sees a stiffer (softer) medium whereas the shear stress

sees a softer (stiffer) medium. A ratio of 10 and 0.1 between the two effective viscosities is found

for δ/µ = 3.91 and δ/µ = −2.81, respectively. This suggests that using viscosity estimated

from pure shear (e.g. post-glacial rebound) to model the deformation of the medium subject to a

simple shear (e.g. convection) may introduce strong bias. We thus do not confirm the conclusion

of Christensen (1987) that mechanical anisotropy has a second order effect only. This discrepancy

is related to the difference between our 3D formalism and Christensen’s 2D approach valid only

for a layered medium. Our results are closer to the conclusion of Han & Wahr (1997) based also

on a 3D modeling.

3.3 The effect of arbitrary orientations

The results become more complex than presented above if the principal axes of the stress tensor

are not aligned with the crystallographic axes. To illustrate the influence of the orientation of the

crystal, we consider a cubic medium vertically tilted by an angle θ and rotated by an angleφ in

the horizontal plane. For the sake of the argument, we take a cubic medium withδ/µ = 2, i.e.

an anisotropy of∆=44%. From equation 19 we determine the isotropic viscositythat best fits

the actual deformation (effective viscosity) and the associated error as a function ofθ andφ, for

simple shear. Results displayed in figure 3 show that the effective value of viscosity is not much
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Figure 3. Isocontours of the ratio between the effective viscosity and the reference viscosity, as a function
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Figure 4. Isocontours ofχ0, the difference between the actual strain rate tensor and the one obtainedfor the

best fitting isotropic medium, for pure shear.

affected by the orientation of the crystal (less than a factor 2), and is thus mainly controlled by the

value ofδ/µ. However, the errors introduced by the isotropic approximation, plotted on figure 4,

show that there is usually no equivalent isotropic medium toa rotated cubic medium, except for

specific orientations. The large errors come from the fact that, because of the coupling induced by

the anisotropic viscosity coefficients, the principal axesof deformation are not aligned anymore
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Figure 5. Angle in degreeΘ between the direction of maximum extension rate and thez-direction, for pure

shear.

with the principal axes of the stress tensor. To explore thispoint, we plot on figure 5 the angle

between the vertical axis and the direction of maximal extension rate. As this angle is usually non

zero, the directions of the principal axes of the strain ellipsoid cannot be used to infer directly the

orientation of principal axes of the stress, for an anisotropic medium. The isotropic approximation

thus generally introduces error both in the values of the strain rate and in the inferred directions of

eigenvectors of the strain rate tensor.

We have described in this section the effects of anisotropicviscosity for theoretical mediums

characterized by an arbitrary value of the cubic perturbationδ/µ. In the next section we show how

the value ofδ/µ can be related to the mechanical parameters of a cubic crystal.

4 FROM DISLOCATION CREEP TO ANISOTROPIC VISCOSITY TENSOR

4.1 Dislocation creep in cubic crystals

Plastic deformation in a crystal is a function of the activity and orientation of prescribed slip

systems (e.g. Poirier 1985), and five independent active slip systems are required to accommodate

an arbitrary deformation (Von Mises’ criterion). To define acanonical cubic crystal that fulfills the

Von Mises’ criterion, we consider a FCC crystal with two families of slip planes characterized by
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two different critical resolved shear stress (CRSS). The firstfamily of slip systems corresponds to

(111)[̄110] with CRSSτ 1
0 (4 planes with 3 slip directions = 12 slip systems) and the second family

corresponds to (001)[1̄10] with CRSSτ 2
0 (3 planes with 2 slip directions = 6 slip systems). The

plastic deformation of the crystal is given by (e.g. Kaminski & Ribe 2001)

ǫ̇ij = 2ǫ̇0

18
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wherels andn
s are unit vectors in the slip direction and normal to the slip plane of the slip system

s, respectively. The stress exponentn is usually larger than 1 for dislocation creep, but we focus

here on anisotropic effects and we will keepn=1 for the sake of the argument. Equation 22 can be

rewritten as
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with τ ∗ =
τ2

0

τ1

0

. The expressions of the isotropic viscosity and of the cubicperturbation parameter

δ/µ are found by comparison with equation 14:

µ =
3 + 11τ ∗

20(3 + 2τ ∗)

τ 1
0

ǫ̇0

, (25)

δ

µ
=
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. (26)

The value ofδ/µ as a function ofτ ∗ is shown in figure 6, where one can see that the limit of

stability is reached whenτ ∗ → 0 (δ/µ = 5) whereas an isotropic behavior is found forτ ∗=3/4.

The minimal value isδ/µ = −20/11 which falls within the stability domain.

Some geological materials present a cubic symmetry and can be mechanically described using

a FCC model, for example halite and spinel-type ringwoodite.The first material is relevant for
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Figure 6. Value of the cubic perturbationδ/µ as a function of the ratio of the critical resolved shear stresses

τ∗ in a FCC crystal.

the dynamics of salt diapirs whereas the second one is relevant for the dynamics of the transition

zone. In these two minerals, the (111)[1̄10] family of slip systems is softer than the second fam-

ily (001)[1̄10] at room conditions and under high pressure (10 GPa), which yields a value ofτ ∗

between 2 and 10 (Lebensohn et al. 2003; Wenk et al. 2005; Carrez et al. 2006), orδ/µ between

-1 and -1.64. At the high temperature and pressure conditions of the transition zone (1800 K, 20

GPa), potential slip systems will tend to have similar critical resolved shear stress (Wenk et al.

2005), and a value ofτ ∗=1 can be used as a lower bound, orδ/µ = −0.35, which yields a total

range of−1.64 ≤ δ/µ ≤ −0.35. The results from the preceding section show that the valuesof

δ/µ for geologically relevant crystals fall in a range in which anisotropy has some major effects

(see Figure 2). First the effective viscosity is going to be afunction of the geometry of the imposed

stress and second if the crystals are not perfectly aligned with the principal direction of stress, an

additional rotation of the strain ellipsoid will be inducedby anisotropic coupling.

4.2 The case of a ringwoodite polycrystal : implications of the lattice preferred orientation

The previous conclusions were obtained for a single crystaland we illustrate here how they change

for a polycrystal. The anisotropic viscosity of a polycrystalline aggregate is a function both the

anisotrotropic tensor of the single crystal and the distribution of orientation of the crystals. There

is different ways of averaging crystal properties in an aggregate, the two end-members being the
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Figure 7. Anisotropy parameter∆∗ for ringwoodite polycrystal for extremal values ofδ/µ, as a function

of dispersion (left y-axis). We also present for reference the elasticanisotropy as a function of disperions

(solid line, right y-axis).

Voigt average (homogeneous strain rate) and the Reuss average (homogeneous stress). The Voigt

average is defined by

ηV oigt =
1

N

N
∑

ν=1

ην
ij, (27)

whereN the number of crystals andην
ij the viscosity tensor for crystalν, depending on the orien-

tation of the crystal ; the Reuss average is defined by

η−1
Reuss =

1

N

N
∑

ν=1

(

ην
ij

)

−1

. (28)

For a uniform distribution of crystal orientation, the polycrystal will be equivalent to an isotropic

medium. Using a Voigt average, the cubic perturbation will cancel out and the resulting viscosity

will be the isotropic part of the single crystal viscosity tensor. As the Reuss average is based

on compliance instead of viscosity, the cubic perturbationwill not cancel out and the isotropic

viscosity will depend onδ/µ. Only the Voigt average is thus fully consistent with our formalism,

whereas the Reuss average would require to define a complianceperturbation instead of a viscosity

perturbation. A detailed discussion of the averaging procedure is beyond the scope of this article

but, nevertheless, we checked that its influence on the results presented below is small.

We use a lattice preferred orientation (LPO) uniformly distributed on a domain (φ1 = [0, dπ],

cos(θ) = [1− 2d, 1],φ2 = [0, dπ]) whereφ1, θ, φ2 are Euler angles andd is a dispersion parameter

between 0 and 1. Ford = 1, the distribution is uniform over the whole Eulerian space and the

medium is isotropic. Ford → 0, the distribution becomes sharper and the polycrystal becomes
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equivalent to a single crystal. The reference isotropic tensor is thus now defined byd = 1. As

in section 2 we introduce an anisotropy parameter to quantify the difference between the actual

polycrystal tensor and the isotropic polycrystal tensor (d = 1),

∆∗ = 100
‖ηIJ − ηd=1

IJ ‖
‖ηIJ‖

. (29)

This parameter is shown on figure 7 for the two extreme values of δ/µ for ringwoodite. Ford → 1,

∆∗ → 0 as the medium becomes isotropic, whereas ford → 0, ∆∗ → ∆ corresponding to the

monocrystal. We can see that a low seismic anisotropy (2%) corresponds to a sharp LPO and will

produce a significant anisotropic mechanical behavior. In the following, we explore this effect for

three stress conditions and for various LPO dispersion parameterd.

We apply a simple shear, a pure shear and a combined stressσ = (1,−1, 0, 0, 0,
√

2)T on the

polycrystal, usingδ/µ = −1.64 andδ/µ = −0.35. For each case, we determine both the effec-

tive viscosityµeff and the associated errorχ0 corresponding to the best fitting isotropic medium.

Two main results are shown on figure 8. First, the effective viscosity of the polycrystal depends

weakly ond, which means that the aggregate viscosity is primarily a function of the monocrystal

anisotropy. Second, the isotropic approximation introduces significant errors ford < 0.5 and is not

valid, especially forδ/µ = −1.64. These errors are complex functions ofd because the medium

does not display any particular symmetry ford 6= 0 andd 6= 1. In general there is no isotropic

medium that matches exactly the deformation and the effective viscosity depends weakly on the

stress configuration.

The previous results bear some implications for the mechanical properties of the transition

zone. These properties are going to be a function ofδ/µ for ringwoodite as discussed above and

of lattice preferred orientation (d). Seismic anisotropy in the transition zone is weak but maybe

as large as 2% (Trampert & van Heijst 2002). This value can be used to estimate the value ofd

from the elastic tensor of the monocrystal. As the elastic anisotropy of a ringwoodite monocrystal

is also small (about 3% Karki et al. 2001), it implies quite a sharp LPO of ringwoodite in the

transition zone (see figure 7). We can thus conclude that the rheology of the transition zone is

significantly anisotropic. As a consequence a slab going through and a plume spreading under

the transition zone will not see the same effective medium. Furthermore, seismic anisotropy is
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laterally heterogeneous in the transition zone which implies also mechanical heterogeneities that

may affect the strength and geometry of the convective flow through the transition zone.
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5 CONCLUSION

The description of anisotropic viscosity using a fourth-order tensor can be simply formalised based

on tensor perturbation in a 6 dimensional space. This technique applied to the cubic symmetry al-

lows a straightforward exploration of the range of effects of cubic anisotropic viscosity. Unlike in

the previous study of Christensen (1987) based on a layered medium, we found here that mechan-

ical anisotropy is potentially important. The main effect is that the effective viscosity for a given

medium does depend on the geometry of the applied stress and that there is no unique isotropic

medium that can reproduce the complex behaviour of an anisotropic medium.

Misalignment between the principal axes of the viscosity tensor and that of the applied stress

also modifies the effective viscosity compared to the aligned case and, additionnally, gives the

strain rate tensor axes still another direction. In this situation, the actual strain rate cannot be

obtained by any equivalent isotropic medium.

The viscosity estimated for a given geodynamical process, like post-glacial rebound, may not

be valid for another, like convection, even without mentioning others complexities like timescale-

or temperature-dependent viscosity (e.g.Čadek & Fleitout 2003).

Cubic symmetry is the highest anisotropic symmetry and probably represents a lower bound

of the range of effect of mechanical anisotropy. The method we have presented can be used to in-

vestigate the anisotropy of more complex crystals. Their description can however become tedious

beyond the hexagonal symmetry which is still tractable (three independent anisotropy parameters

instead of one here). Furthermore, natural polycrystals will not always be described by simple

viscosity symmetry and will result in a more complex behaviour, including potential feedback

between LPO development and effective viscosity (Muhlhauset al. 2004). The case of ringwood-

ite in the transition zone explored above provides an example of the richness of real systems.

Deciphering these effects in geodynamical observations like post-glacial rebounds or small-scale

convection is challenging and the link between seismic and mechanical anisotropy mainly remains

to be explored (e.g. Moresi & Muhlhaus 2006). However, our formalism is simple enough to be

straightforwardly included in numerical codes used to model convection in planetary mantles. The

development of LPO in mantle flow makes the effective viscosity sensitive to the type and orienta-
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tion of stress. This mechanism might contribute to the weakening necessary for mantle convection

to evolve in a plate tectonics regime.
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