
Copyright © 2005 C. J. Date and Hugh Darwen page 5.1

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Chapter 5

T u t o r i a l D

┌───────────────────────────┐
│ Introduction │
│ Common constructs │
│ Scalar definitions │
│ Tuple definitions │
│ Relational definitions │
│ Scalar operations │
│ Tuple operations │
│ Relational operations │
│ Relations and arrays │
│ Statements │
│ Recent language changes │
│ A remark on syntax │
│ Exercises │
└───────────────────────────┘

INTRODUCTION

Tutorial D is a computationally complete programming language with
fully integrated database functionality. It is deliberately not
meant to be "industrial strength"; rather, it is a "toy" language,
whose principal purpose is to serve as a teaching vehicle. As a
consequence, many features that would be required in an industrial-
strength language are intentionally omitted. (Extending Tutorial D
to incorporate such features (thereby turning it into what might be
called Industrial D) could be a worthwhile project.) For example,
there is no support for any of the following:

• Sessions and connections

• Any form of communication with the outside world (I/O
facilities, etc.)

• Exception handling and feedback information

In connection with this last point, however, we should at least
say that we expressly do not want a form of exception-handling that
requires the user to pass a feedback argument on each and every
operator invocation (such an approach would effectively force all
operators to be update operators).

For obvious reasons, there is also no support for any of the
items listed in the subsection "Topics Deliberately Omitted" in
Chapter 1 (security and authorization, triggered procedures, and so
forth). Nor is there any support for type inheritance; however,
extensions to deal with this latter topic are described in Part IV
of this book.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.2

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

In addition to the foregoing, many minor details, both
syntactic and semantic, that would require precise specification in
an industrial strength language have also been ignored. For
example, details of the following are all omitted:

• Language characters, identifiers, scope of names, etc.

• Reserved words (if any), comments,1 delimiters and separators,
etc.

• Operator precedence rules (except for a couple of important
special cases)

• "Obvious" syntax rules (e.g., distinct parameters to the same
operator must have distinct names)

On the other hand, the language is meant to be well designed,
as far as it goes. Indeed, it must be──for otherwise it would not
be a valid D, since it would violate RM Prescription 26 (which
requires every D to be constructed according to principles of good
language design).

As already noted, Tutorial D is computationally complete,
meaning that entire applications can be written in the language; it
is not just a "data sublanguage" that relies on some host language
to provide the necessary computational capabilities. In accordance
with the assumptions spelled out in Chapter 1, moreover, it is also
(like most languages currently in widespread use) imperative in
style──though it is worth mentioning that the "data sublanguage"
portion, being based as it is on relational algebra, can in fact be
regarded as a functional language if considered in isolation.*

2

In
practice we would hope that this portion of the language would be
implemented in an interactive form as well as in the form of a
programming language per se; in other words, we endorse the dual-
mode principle as described in, e.g., reference [76].

Tutorial D is a relational language, of course, but in some
respects it can be regarded as an object language as well. For one
thing, it supports the concept of single-level storage (see OO Very
Strong Suggestion 3). More important, it supports what is probably
the most fundamental feature of object languages: namely, it allows
users to define their own types. And since there is no reliance on
a host language, there is no "impedance mismatch" between the types
available inside the database and those available outside (i.e.,
there is no need to map between the arbitrarily complex types used
in the database and the probably rather simple types provided by

1 In our examples we show comments as text strings bracketed by "/*" and "*/"
delimiters.
2 More precisely, the read-only features of the data sublanguage portion can be
so regarded. Note: It is well known that a relational data sublanguage can be
based on either relational algebra or relational calculus. It is also well
known that an algebraic style is intuitively preferable for some tasks, a
calculus style for others. As already mentioned, Tutorial D uses an algebraic
style, for definiteness.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.3

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

some conventional host language).3 In other words, we agree with
the object community's complaint that there is a serious problem in
trying to build an interface between a DBMS that allows user-
defined types and a programming language that does not. For
example, if the database contains a value of type POLYGON, then in
Tutorial D that value can be assigned to a local variable also of
type POLYGON──there is no need to break it down into, say, a
sequence of number pairs representing the (x,y)-coordinates of the
vertices of the polygon in question. Altogether, then, it seems
fair to characterize Tutorial D as a true "object/relational"
language (inasmuch as that term has any objective meaning!).

Tutorial D has been designed to support all of the
prescriptions and proscriptions of The Third Manifesto as defined
in Chapter 4. It deliberately does not support all of the "very
strong suggestions" mentioned in that chapter, though it does
support some of them (possible extensions to deal with others are
considered briefly in Chapter 10). The language is also
deliberately not meant to be minimal in any sense──it includes
numerous features that are really just shorthand for certain
combinations of others. (This remark applies especially to its
relational support, as should already be clear from Chapter 2.)
However, it is at least true that the shorthands in question are
specifically designed to be shorthands [31]; i.e., the redundancies
are deliberate, and are included for usability reasons.

Most of the rest of this chapter consists of a BNF grammar for
Tutorial D. The grammar is defined by means of what is essentially
standard BNF notation, except for a couple of simplifying
extensions that we now explain. Let <xyz> denote an arbitrary
syntactic category (i.e., anything appearing on the left side of
some BNF production rule). Then:

• The expression <xyz list> denotes a sequence of zero or more
<xyz>s in which each pair of adjacent <xyz>s is separated by at
least one space.

• The expression <xyz commalist> denotes a sequence of zero or
more <xyz>s in which each pair of adjacent <xyz>s is separated
by a comma (as well as, optionally, one or more spaces before
the comma or after it or both).

Observe in particular that most of the various lists and
commalists described in what follows are allowed to be empty. The
effect of specifying an empty list or commalist is usually obvious;
for example, an <assignment> for which the contained commalist of
<assign>s is empty degenerates to a <no op> ("no operation").
Occasionally, however, there is something a little more interesting

3 Actually the term impedance mismatch is used to mean several different things,
of which the mismatch referred to here, between database and language types, is
only one.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.4

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

to be said about such cases (see Exercise 9 at the end of the
chapter).

Finally, a few miscellaneous points:

• All syntactic categories of the form <... name> are defined to
be <identifier>s, barring explicit production rules to the
contrary. The category <identifier> in turn is terminal and is
not defined here.

• A few of the production rules include an alternative on the
right side that consists of an ellipsis followed by plain text.
In such cases, the plain text is intended as an informal──i.e.,
natural language──explanation of the syntactic category being
defined (or one form of that syntactic category).

• Some of the production rules are accompanied by a prose
explanation of certain additional syntax rules or the
corresponding semantics or both──but only where such
explanations seem necessary and have not already been given in
earlier chapters.4 (For this reason among others, the grammar
is not suitable for driving a mechanical parser, nor is it
meant to be; instead, it is meant to serve as an
understandable, albeit fairly formal, definition of the
constructs that are syntactically valid in the language. A
grammar suitable for mechanical parsing can be found at the
website www.thethirdmanifesto.com.)

• Please note that braces "{" and "}" in the grammar stand for
themselves; i.e., they are symbols in the language being
defined, not symbols of the metalanguage as they usually are.
To be more specific, we use braces to enclose commalists of
items when the commalist in question is intended to denote a
set of some kind, implying that (a) the order in which the
items appear within that commalist is immaterial and (b) if an
item appears more than once, it is treated as if it appeared
just once (usually; the exceptions are EXACTLY and the n-adic
versions of COUNT, SUM, AVG, and D_UNION, q.v., for which
repeated items have significance). Note, therefore, that if
for some <xyz> A and B are <xyz commalist>s enclosed in braces
that differ only in the order in which the individual <xyz>s
appear, then A and B denote the same thing and are regarded as
interchangeable.

• The language defined by this grammar reflects the logical
difference between expressions and statements. An expression
denotes a value; it can be thought of as a rule for computing
or determining the value in question. A statement does not
denote a value; instead, it causes some action to occur, such

4 For a formal definition of the semantics of the relational algebra operators in
particular, however, see Appendix A.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.5

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

as assigning a value to some variable or changing the flow of
control.

• As already noted, various extensions to the language as defined
by this grammar are proposed later in the book (especially in
Part IV). A syntactic summary of the entire
language──including the inheritance extensions from Part IV,
but excluding extensions motivated merely by certain of the
suggestions in Chapter 10──can be found in Appendix I.

• Finally, the language defined by this grammar constitutes a
significant revision of Tutorial D as defined in this book's
predecessor (reference [83]). For readers who might be
familiar with the earlier version, the section "Recent Language
Changes" (following the sections on the grammar per se)
summarizes the most important of those revisions.

COMMON CONSTRUCTS

<type>
::= <scalar type>

| <tuple type>
| <relation type>

<scalar type>
::= <scalar type name>

| SAME_TYPE_AS (<scalar exp>)

<tuple type>
::= <tuple type name>

| SAME_TYPE_AS (<tuple exp>)
| TUPLE SAME_HEADING_AS (<nonscalar exp>)

<relation type>
::= <relation type name>

| SAME_TYPE_AS (<relation exp>)
| RELATION SAME_HEADING_AS (<nonscalar exp>)

<user op def>
::= <user update op def>

| <user read-only op def>

<user update op def>
::= OPERATOR <user op name> (<parameter def commalist>)

UPDATES { <parameter name commalist> } ;
<statement>

END OPERATOR

The <parameter def commalist> is enclosed in parentheses
instead of braces, as is the corresponding <argument commalist> in
an invocation of the operator in question (see <user op inv>,
later), because we follow convention in relying on ordinal position

Copyright © 2005 C. J. Date and Hugh Darwen page 5.6

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

for argument/parameter matching.5 The <parameter name commalist>
identifies parameters that are subject to update.

In practice, it might be desirable to support an "external"
form of <user update op def> as well. Syntactically, such a <user
update op def> would include, not a <statement> as above, but
rather a reference to an external file that contains the code that
implements the operator (possibly written in some different
language). It might also be desirable to support a form of <user
update op def> that includes neither a <statement> nor such an
external reference; such a <user update op def> would define merely
what is called a specification signature for the operator in
question, and the implementation code would then have to be defined
elsewhere. Splitting operator definitions into separate pieces in
this way is likely to prove particularly useful if type inheritance
is supported (see Part IV). Analogous remarks apply to <user read-
only op def>s as well, q.v.

<parameter def>
::= <parameter name> <type>

<user read-only op def>
::= OPERATOR <user op name> (<parameter def commalist>)

RETURNS <type> ;
<statement>

END OPERATOR

The <user op name> denotes a scalar, tuple, or relational
operator, depending on the specified <type>.

<user op inv>
::= <user op name> (<argument commalist>)

<argument>
::= <exp>

<exp>
::= <scalar exp>

| <nonscalar exp>

<scalar exp>
::= <scalar with exp>

| <scalar nonwith exp>

<nonscalar exp>
::= <tuple exp>

| <relation exp>

<tuple exp>

5 Observe that this remark is true of read-only as well as update operators. In
particular, it is true of scalar selector operators──that is, the arguments to a
<scalar selector inv> are specified as a commalist in parentheses, even though
the corresponding parameters are specified as a commalist in braces (see
<possrep def>, later; see also the section "A Remark on Syntax" at the end of
the chapter).

Copyright © 2005 C. J. Date and Hugh Darwen page 5.7

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

::= <tuple with exp>
| <tuple nonwith exp>

<relation exp>
::= <relation with exp>

| <relation nonwith exp>

<scalar with exp>
::= WITH <name intro commalist> : <scalar exp>

Let SWE be a <scalar with exp>, and let NIC and SE be the <name
intro commalist> and the <scalar exp>, respectively, in SWE. The
individual <name intro>s in NIC are executed in sequence as
written. As the next production rule shows, each such <name intro>
includes an <exp> and an <introduced name>. Let NI be one of those
<name intro>s, and let the <exp> and the <introduced name> in NI be
X and N, respectively. Then N denotes the value obtained by
evaluating X, and it can appear subsequently in SWE wherever the
expression (X)──i.e., X in parentheses──would be allowed.
Analogous remarks apply to <tuple with exp>s and <relation with
exp>s, q.v.

<name intro>
::= <exp> AS <introduced name>

<tuple with exp>
::= WITH <name intro commalist> : <tuple exp>

<relation with exp>
::= WITH <name intro commalist> : <relation exp>

<user op drop>
::= DROP OPERATOR <user op name>

<selector inv>
::= <scalar selector inv>

| <tuple selector inv>
| <relation selector inv>

<scalar var ref>
::= <scalar var name>

<tuple var ref>
::= <tuple var name>

<relation var ref>
::= <relation var name>

<attribute ref>
::= <attribute name>

<possrep component ref>
::= <possrep component name>

<assignment>
::= <assign commalist>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.8

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

The semantics of <assignment> are those of multiple assignment,
as required and specified by RM Prescription 21.

<assign>
::= <scalar assign>

| <tuple assign>
| <relation assign>

SCALAR DEFINITIONS

<scalar type name>
::= <user scalar type name>

| <built-in scalar type name>

<built-in scalar type name>
::= INTEGER | RATIONAL | CHARACTER | CHAR | BOOLEAN

As indicated, Tutorial D supports the following built-in scalar
types:

• INTEGER (signed integers): literals expressed as an optionally
signed decimal integer; usual arithmetic and comparison
operators, with usual notation.

• RATIONAL (signed rational numbers): literals expressed as an
optionally signed decimal mantissa (including a decimal point),
optionally followed by the letter E and an optionally signed
decimal integer exponent (examples: 5., 5.0, 17.5, -5.3E+2);
usual arithmetic and comparison operators, with usual notation.

• CHARACTER or CHAR (varying-length character strings): literals
expressed as a sequence, enclosed in single quotes, of zero or
more characters; usual string manipulation and comparison
operators, with usual notation──"||" (concatenate), SUBSTR
(substring), etc. By the way, if you are familiar with SQL, do
not be misled here; the SQL data type CHAR corresponds to
fixed-length character strings (the varying-length analog is
called VARCHAR), and an associated length──default one──must be
specified as in, e.g., CHAR(25). Tutorial D does not support a
fixed-length character string type.

• BOOLEAN (truth values): literals TRUE and FALSE; usual
comparison operators (= and g) and boolean operators (AND, OR,
NOT, etc.), with usual notation. Note that Tutorial D's
support for type BOOLEAN goes beyond that found in many
languages in at least three ways:

1. It includes explicit support for the XOR operator (exclusive
OR). The expression a XOR b (where a and b are <bool exp>s)
is semantically identical to the expression a g b.

2. It supports n-adic versions of the operators AND, OR, and
XOR. The syntax is:

<n-adic bool op name> { <bool exp commalist> }

Copyright © 2005 C. J. Date and Hugh Darwen page 5.9

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

The <n-adic bool op name> is AND, OR, or XOR. AND returns
TRUE if and only if all specified <bool exp>s evaluate to
TRUE. OR returns FALSE if and only if all specified <bool
exp>s evaluate to FALSE. XOR returns TRUE if and only if
the number of specified <bool exp>s that evaluate to TRUE is
odd.

3. It supports an n-adic operator of the form

EXACTLY (<integer exp>, { <bool exp commalist> })

Let the <integer exp> evaluate to N.6 Then the overall
expression evaluates to TRUE if and only if the number of
specified <bool exp>s that evaluate to TRUE is N. Note: If
the number of specified <bool exp>s is zero──i.e., if the
<bool exp commalist> is empty──the comma following the
<integer exp> must be omitted.

In practice we would expect a variety of other built-in scalar
types to be supported in addition to the foregoing: DATE, TIME,
perhaps BIT (varying-length bit strings), and so forth. We omit
such types here as irrelevant to our main purpose.

<user scalar type def>
::= <user scalar root type def>

The syntactic category <user scalar root type def> is
introduced merely to pave the way for the inheritance support to be
discussed in Part IV. All types are root types in the absence of
inheritance support.

<user scalar root type def>
::= TYPE <user scalar type name> [ORDINAL]

<possrep def list>

<possrep def>
::= POSSREP [<possrep name>]

{ <possrep component def commalist>
[<possrep constraint def>] }

<possrep component def>
::= <possrep component name> <type>

No two distinct <possrep def>s within the same <user scalar
type def> can include a component with the same <possrep component
name>.

<possrep constraint def>
::= CONSTRAINT <bool exp>

The <bool exp> must not mention any variables, but <possrep
component ref>s can be used to denote the corresponding components

6 The detailed syntax of <integer exp>s is not specified in this chapter;
however, we note that an <integer exp> is of course a numeric expression and
hence a <scalar exp> also.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.10

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

of the applicable possible representation ("possrep") of an
arbitrary value of the scalar type in question.

<user scalar type drop>
::= DROP TYPE <user scalar type name>

<scalar var def>
::= VAR <scalar var name> <scalar type or init value>

<scalar type or init value>
::= <scalar type> | INIT (<scalar exp>)

| <scalar type> INIT (<scalar exp>)

If <scalar type> and the INIT specification both appear,
<scalar exp> must be of type <scalar type>. If <scalar type>
appears, the scalar variable is of that type; otherwise it is of
the same type as <scalar exp>. If the INIT specification appears,
the scalar variable is initialized to the value of <scalar exp>;
otherwise it is initialized to an implementation-defined value.

TUPLE DEFINITIONS

<tuple type name>
::= TUPLE <heading>

<heading>
::= { <attribute commalist> }

<attribute>
::= <attribute name> <type>

<tuple var def>
::= VAR <tuple var name> <tuple type or init value>

<tuple type or init value>
::= <tuple type> | INIT (<tuple exp>)

| <tuple type> INIT (<tuple exp>)

If <tuple type> and the INIT specification both appear, <tuple
exp> must be of type <tuple type>. If <tuple type> appears, the
tuple variable is of that type; otherwise it is of the same type as
<tuple exp>. If the INIT specification appears, the tuple variable
is initialized to the value of <tuple exp>; otherwise it is
initialized to an implementation-defined value.

RELATIONAL DEFINITIONS

<relation type name>
::= RELATION <heading>

<relation var def>
::= <database relation var def>

| <application relation var def>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.11

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

A <relation var def> defines a relation variable (i.e., a
relvar). In practice it might be desirable to provide a way of
defining relation constants or "relcons" also (see RM Prescription
14 in Chapter 6 for further discussion). Note that Tutorial D
already supports two built-in "relcons" called TABLE_DEE and
TABLE_DUM (see the section "Relational Operations," later).

<database relation var def>
::= <real relation var def>

| <virtual relation var def>

A <database relation var def> defines a database relvar──i.e.,
a relvar that is part of the database. In particular, therefore,
it causes an entry to be made in the catalog. Note, however, that
neither databases nor catalogs are explicitly mentioned anywhere in
the syntax of Tutorial D.

<real relation var def>
::= VAR <relation var name>

REAL <relation type or init value>
<candidate key def list>

The keyword REAL can alternatively be spelled BASE. An empty
<candidate key def list> is permitted, though not required, only if
(a) the <relation type or init value> specifies or includes INIT
(<relation exp>) or (b) <relation type> is of the form SAME_TYPE_AS
(<relation exp>); it is equivalent to a <candidate key def list>
that contains exactly one <candidate key def> for each key that can
be inferred by the system from the <relation exp> in that INIT or
SAME_TYPE_AS specification (see RM Very Strong Suggestion 3 in
Chapter 10).

<relation type or init value>
::= <relation type> | INIT (<relation exp>)

| <relation type> INIT (<relation exp>)

An INIT specification can appear only if either REAL (or BASE)
or PRIVATE is specified for the relvar in question (see
<application relation var def>, later, for an explanation of
PRIVATE). If <relation type> and the INIT specification both
appear, <relation exp> must be of type <relation type>. If
<relation type> appears, the relvar is of that type; otherwise it
is of the same type as <relation exp>. If and only if the relvar
is either real or private, then (a) if the INIT specification
appears, the relvar is initialized to the value of <relation exp>;
(b) otherwise it is initialized to the empty relation of the
appropriate type.

<candidate key def>
::= KEY { <attribute ref commalist> }

In accordance with the discussions in Chapter 2, we use the
unqualified keyword KEY to mean a candidate key specifically.
Tutorial D does not explicitly support primary keys as such.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.12

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<virtual relation var def>
::= VAR <relation var name> VIRTUAL (<relation exp>)

<candidate key def list>

The <relation exp> must mention at least one database relvar
and no other variables. An empty <candidate key def list> is
equivalent to a <candidate key def list> that contains exactly one
<candidate key def> for each key that can be inferred by the system
from <relation exp> (see RM Very Strong Suggestion 3 in Chapter
10).

<application relation var def>
::= VAR <relation var name> <private or public>

<relation type or init value>
<candidate key def list>

An empty <candidate key def list> is permitted, though not
required, only if (a) the <relation type or init value> specifies
or includes INIT (<relation exp>) or (b) <relation type> is of the
form SAME_TYPE_AS (<relation exp>); it is equivalent to a
<candidate key def list> that contains exactly one <candidate key
def> for each key that can be inferred by the system from the
<relation exp> in that INIT or SAME_TYPE_AS specification (see RM
Very Strong Suggestion 3 in Chapter 10).

<private or public>
::= PRIVATE | PUBLIC

<relation var drop>
::= DROP VAR <relation var ref>

The <relation var ref> must denote a database relvar, not an
application one.

<constraint def>
::= CONSTRAINT <constraint name> <bool exp>

A <constraint def> defines a database constraint. The <bool
exp> must not mention any variable that is not a database relvar.
(Tutorial D does not support the definition of constraints on
scalar variables or tuple variables or application relvars, though
there is no logical reason why it should not do so.)

<constraint drop>
::= DROP CONSTRAINT <constraint name>

SCALAR OPERATIONS

<scalar nonwith exp>
::= <scalar var ref>

| <scalar op inv>
| (<scalar exp>)

<scalar op inv>
::= <user op inv>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.13

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

| <built-in scalar op inv>

<built-in scalar op inv>
::= <scalar selector inv>

| <THE_ op inv>
| <attribute extractor inv>
| <agg op inv>
| ... plus the usual possibilities

It is convenient to get "the usual possibilities" out of the
way first. By this term, we mean the usual numeric operators ("+",
"*", etc.), character string operators ("||", SUBSTR, etc.), and
boolean operators, all of which we have already said are built-in
operators in Tutorial D. It follows that numeric expressions,
character string expressions, and in particular boolean
expressions──i.e., <bool exp>s──are all <scalar exp>s (and we
assume the usual syntax in each case). The following are also
<scalar exp>s:

• A special form of <bool exp>, IS_EMPTY (<relation exp>), which
returns TRUE if and only if the relation denoted by <relation
exp> is empty. (In practice, it might be useful to support an
IS_NOT_EMPTY operator as well.)

• CAST expressions of the form CAST_AS_T (<scalar exp>), where T
is a scalar type and <scalar exp> denotes a scalar value to be
converted ("cast") to that type. Note: We use syntax of the
form CAST_AS_T (...), rather than CAST (... AS T), because this
latter form raises "type TYPE" issues──e.g., what is the type
of operand T?──that we prefer to avoid.

• IF-THEN-ELSE and CASE expressions of the usual form (and we
assume without going into details that tuple and relation
analogs of these expressions are available also).

The syntax of <scalar selector inv> has already been explained
(see Chapter 3 for several examples). Note: Whether scalar
selectors are regarded as built-in or user-defined could be a
matter of some debate, but the point is unimportant for present
purposes. Analogous remarks apply to THE_ operators and attribute
extractors also (see the next two production rules).

<THE_ op inv>
::= <THE_ op name> (<scalar exp>)

We include this production rule in this section because in
practice we expect most <THE_ op inv>s to denote scalar values. In
fact, however, a <THE_ op inv> will be a <scalar exp>, a <tuple
exp>, or a <relation exp>, depending on the type of the <possrep
component> corresponding to <THE_ op name>.

<attribute extractor inv>
::= <attribute ref> FROM <tuple exp>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.14

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

We include this production rule in this section because in
practice we expect most attributes to be scalar. In fact, however,
an <attribute extractor inv> will be a <scalar exp>, a <tuple exp>,
or a <relation exp>, depending on the type of <attribute ref>.

<agg op inv>
::= <agg op name> ([<integer exp>,] <relation exp>

[, <attribute ref>])

The <integer exp> and following comma must be specified if and
only if the <agg op name> is EXACTLY. The <attribute ref> must be
omitted if the <agg op name> is COUNT; otherwise, it can be omitted
if and only if the <relation exp> denotes a relation of degree one,
in which case the sole attribute of that relation is assumed by
default. For SUM and AVG, the attribute denoted by <attribute ref>
must be of some type for which the operator "+" is defined; for MAX
and MIN, it must be of some ordinal type; for AND, OR, XOR, and
EXACTLY, it must be of type BOOLEAN; for UNION, D_UNION, and
INTERSECT, it must be of some relation type. Note: We include
this production rule in this section because in practice we expect
most <agg op inv>s to denote scalar values. In fact, however, an
<agg op inv> will be a <scalar exp>, a <tuple exp> (potentially),
or a <relation exp> depending on the type of the operator denoted
by <agg op name>. (Given the aggregate operators currently
defined, for UNION, D_UNION, and INTERSECT it is a <relation exp>,
otherwise it is a <scalar exp>.)

<agg op name>
::= COUNT | SUM | AVG | MAX | MIN | AND | OR | XOR

| EXACTLY | UNION | D_UNION | INTERSECT

COUNT returns a result of type INTEGER; SUM, AVG, MAX, MIN,
UNION, D_UNION, and INTERSECT return a result of the same type as
the attribute denoted by the applicable <attribute ref>;7 AND, OR,
XOR, and EXACTLY return a result of type BOOLEAN. The <agg op
name>s AND and OR can alternatively be spelled ALL and ANY,
respectively. Note: Tutorial D includes support for n-adic
versions of (a) AND, OR, XOR, and EXACTLY (see the section "Scalar
Definitions," earlier) and (b) UNION, D_UNION, INTERSECT, and JOIN
(see the section "Relational Operations," later). It also includes
support for n-adic versions of COUNT, SUM, AVG, MAX, and MIN; for
example, SUM {1,2,5,2} is a valid <scalar exp>, and it evaluates to
10.

<scalar assign>
::= <scalar target> := <scalar exp>

| <scalar update>

<scalar target>

7 It might be preferable in practice to define AVG in such a way that, e.g.,
taking the average of a collection of integers returns a rational number. We do
not do so here merely for reasons of simplicity.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.15

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

::= <scalar var ref>
| <scalar THE_ pv ref>

The abbreviation pv stands for pseudovariable. Pseudovariables
are regarded as variables in Tutorial D, implying among other
things that a pseudovariable reference can appear wherever the
grammar requires a variable reference. Note: As mentioned in
Chapter 3, it would be possible, if desired, to include support for
other kinds of pseudovariables in addition to the THE_
pseudovariables mentioned in this grammar. In particular, it would
be possible to support pseudovariables patterned after Tutorial D's
existing attribute extractors.

<scalar THE_ pv ref>
::= <THE_ pv name> (<scalar target>)

The <possrep component> corresponding to <THE_ pv name> must be
of some scalar type.

<scalar update>
::= UPDATE <scalar target>

(<possrep component assign commalist>)

Let the <scalar target>, ST say, be of type T. Every <possrep
component assign>, PCA say, in the <possrep component assign
commalist> is syntactically identical to an <assign>, except that:

• The target of PCA must be a <possrep component target>, PCT
say.

• PCT must identify, directly or indirectly,8 some Ci (i = 1, 2,
..., n), where C1, C2, ..., Cn are the components of some
possrep PR for type T (the same possrep PR in every case).

• PCA is allowed to contain a <possrep component ref>, PCR say,
wherever a <selector inv> would be allowed, where PCR is some
Ci (i = 1, 2, ..., n) and denotes the corresponding possrep
component value from ST.

Steps a. and b. of the definition given for multiple assignment
under RM Prescription 21 in Chapter 4 are applied to the <possrep
component assign commalist>. The result of that application is a
<possrep component assign commalist> in which each <possrep
component assign> is of the form

Ci := exp

8 The phrase directly or indirectly appears several times in this chapter in
contexts like this one. In terms of the present context, we can explain it as
follows: Again, let <possrep component assign> PCA specify <possrep component
target> PCT. Then PCA directly identifies Ci as its target if PCT is Ci; it
indirectly identifies Ci as its target if PCT takes the form of a <possrep THE_
pv ref> PTPR, where the argument at the innermost level of nesting within PTPR
is Ci. The meaning of the phrase directly or indirectly in other similar
contexts is analogous.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.16

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

for some Ci, and no two distinct <possrep component assign>s
identify the same target Ci. Then the original <scalar update> is
equivalent to the <scalar assign>

ST := PR (X1, X2, ..., Xn)

(PR here is the selector operator corresponding to the possrep with
the same name.) The arguments Xi are defined as follows:

• If a <possrep component assign>, PCA say, exists for Ci, then
let the <exp> from PCA be X. For all j (j = 1, 2, ..., n),
replace references in X to Cj by (THE_Cj(ST)). The version of
X that results is Xi.

• Otherwise, Xi is THE_Ci(ST).

<possrep component target>
::= <possrep component ref>

| <possrep THE_ pv ref>

<possrep THE_ pv ref>
::= <THE_ pv name> (<possrep component target>)

<scalar comp>
::= <scalar exp> <scalar comp op> <scalar exp>

Scalar comparisons are a special case of the syntactic category
<bool exp>.

<scalar comp op>
::= = | g | < | ≤ | > | ≥

The operators "=" and "g" apply to all scalar types; the
operators "<", "≤", ">", and "≥" apply to ordinal types only.

TUPLE OPERATIONS

<tuple nonwith exp>
::= <tuple var ref>

| <tuple op inv>
| (<tuple exp>)

<tuple op inv>
::= <user op inv>

| <built-in tuple op inv>

<built-in tuple op inv>
::= <tuple selector inv>

| <THE_ op inv>
| <attribute extractor inv>
| <tuple extractor inv>
| <tuple project>
| <n-adic other built-in tuple op inv>
| <monadic or dyadic other built-in tuple op inv>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.17

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Although we generally have little to say regarding operator
precedence, we find it convenient to give high precedence to tuple
projection in particular. An analogous remark applies to
relational projection also (see later).

<tuple selector inv>
::= TUPLE { <tuple component commalist> }

<tuple component>
::= <attribute ref> <exp>

<tuple extractor inv>
::= TUPLE FROM <relation exp>

The <relation exp> must denote a relation of cardinality one.

<tuple project>
::= <tuple exp>

{ [ALL BUT] <attribute ref commalist> }

The <tuple exp> must not be a <monadic or dyadic other built-in
tuple op inv>.

<n-adic other built-in tuple op inv>
::= <n-adic tuple union>

<n-adic tuple union>
::= UNION { <tuple exp commalist> }

The <tuple exp>s must be such that if the tuples denoted by any
two of those <tuple exp>s have any attributes in common, then the
corresponding attribute values are the same.

<monadic or dyadic other built-in tuple op inv>
::= <monadic other built-in tuple op inv>

| <dyadic other built-in tuple op inv>

<monadic other built-in tuple op inv>
::= <tuple rename> | <tuple extend> | <tuple wrap>

| <tuple unwrap> | <tuple substitute>

<tuple rename>
::= <tuple exp> RENAME (<renaming commalist>)

The <tuple exp> must not be a <monadic or dyadic other built-in
tuple op inv>. The individual <renaming>s are executed in sequence
as written.

<renaming>
::= <attribute ref> AS <introduced name>

| PREFIX <character string literal>
AS <character string literal>

| SUFFIX <character string literal>
AS <character string literal>

For the syntax of <character string literal>, see <built-in
scalar type name>. The <renaming> PREFIX a AS b causes all

Copyright © 2005 C. J. Date and Hugh Darwen page 5.18

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

attributes of the applicable tuple or relation whose name begins
with the characters of a to be renamed such that their name begins
with the characters of b instead. The <renaming> SUFFIX a AS b is
defined analogously.

<tuple extend>
::= EXTEND <tuple exp> ADD (<extend add commalist>)

The <tuple exp> must not be a <monadic or dyadic other built-in
tuple op inv>. The individual <extend add>s are executed in
sequence as written.

<extend add>
::= <exp> AS <introduced name>

Both <tuple extend> and <extend> make use of <extend add>. We
explain both cases here, but it is convenient to treat them
separately:

• In the <tuple extend> case, the <exp> is allowed to include an
<attribute ref>, AR say, wherever a <selector inv> would be
allowed. If the <attribute name> of AR is that of an attribute
of the tuple denoted by the <tuple exp> in that <tuple extend>,
then it denotes the corresponding attribute value; otherwise
the <tuple extend> must be contained in some expression in
which the meaning of AR is defined.

• In the <extend> case, the <exp> is again allowed to include an
<attribute ref>, AR say, wherever a <selector inv> would be
allowed. Let r be the relation denoted by the <relation exp>
in that <extend>. The <exp> can be thought of as being
evaluated for each tuple of r in turn. If the <attribute name>
of AR is that of an attribute of r, then (for each such
evaluation) AR denotes the corresponding attribute value from
the corresponding tuple; otherwise the <extend> must contained
in some expression in which the meaning of AR is defined.

<tuple wrap>
::= <tuple exp> WRAP (<wrapping commalist>)

The <tuple exp> must not be a <monadic or dyadic other built-in
tuple op inv>. The individual <wrapping>s are executed in sequence
as written.

<wrapping>
::= { [ALL BUT] <attribute ref commalist> }

AS <introduced name>

<tuple unwrap>
::= <tuple exp> UNWRAP (<unwrapping commalist>)

The <tuple exp> must not be a <monadic or dyadic other built-in
tuple op inv>. The individual <unwrapping>s are executed in
sequence as written.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.19

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<unwrapping>
::= <attribute ref>

The specified attribute must be of some tuple type.

<tuple substitute>
::= UPDATE <tuple exp> (<attribute assign commalist>)

Syntactically, a <tuple substitute> is identical to a <tuple
update>, except that it contains a <tuple exp> in place of the
<tuple target> required in a <tuple update>. Let t be the tuple
denoted by the <tuple exp>, and let A1, A2, ..., An be the
attributes of t. Every <attribute assign>, AA say, in the
<attribute assign commalist> is syntactically identical to an
<assign>, except that:

• The target of AA must be an <attribute target>, AT say.

• AT must identify, directly or indirectly, some Ai (i = 1, 2,
..., n).

• AA is allowed to contain an <attribute ref>, AR say, wherever a
<selector inv> would be allowed. If the <attribute name> of AR
is that of some Ai (i = 1, 2, ..., n), then AR denotes the
corresponding attribute value from t; otherwise the <tuple
substitute> must be contained in some expression in which the
meaning of AR is defined.

Steps a. and b. of the definition given for multiple assignment
under RM Prescription 21 in Chapter 4 are applied to the <attribute
assign commalist>. The result of that application is an <attribute
assign commalist> in which each <attribute assign> is of the form

Ai := exp

for some Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the expression

UPDATE t (Ai := X, Aj := Y)

where i g j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to deal
with other cases are straightforward.) This expression is
equivalent to the following:

((EXTEND t ADD (X AS Bi, Y AS Bj)) { ALL BUT Ai, Aj })
RENAME (Bi AS Bk, Bj AS Aj, Bk AS Ai)

Here Bi, Bj, and Bk are arbitrary distinct names that are different
from all existing attribute names in t.

<attribute target>
::= <attribute ref>

| <attribute THE_ pv ref>

<attribute THE_ pv ref>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.20

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

::= <THE_ pv name> (<attribute target>)

<dyadic other built-in tuple op inv>
::= <dyadic tuple union> | <tuple compose>

<dyadic tuple union>
::= <tuple exp> UNION <tuple exp>

The <dyadic tuple union> r UNION s is equivalent to the <n-adic
tuple union> UNION {r,s}.

<tuple compose>
::= <tuple exp> COMPOSE <tuple exp>

The <tuple exp>s must not be <monadic or dyadic other built-in
tuple op inv>s. They must be such that if the tuples they denote
have any attributes in common, then the corresponding attribute
values are the same.

<tuple assign>
::= <tuple target> := <tuple exp>

| <tuple update>

<tuple target>
::= <tuple var ref>

| <tuple THE_ pv ref>

<tuple THE_ pv ref>
::= <THE_ pv name> (<scalar target>)

The <possrep component> corresponding to <THE_ pv name> must be
of some tuple type.

<tuple update>
::= UPDATE <tuple target>

(<attribute assign commalist>)

Let TT be the <tuple target>, and let A1, A2, ..., An be the
attributes of TT. Every <attribute assign>, AA say, in the
<attribute assign commalist> is syntactically identical to an
<assign>, except that:

• The target of AA must be an <attribute target>, AT say.

• AT must identify, directly or indirectly, some Ai (i = 1, 2,
..., n).

• AA is allowed to contain an <attribute ref>, AR say, wherever a
<selector inv> would be allowed. If the <attribute name> of AR
is that of some Ai (i = 1, 2, ..., n), then AR denotes the
corresponding attribute value from TT; otherwise the <tuple
update> must be contained in some expression in which the
meaning of AR is defined.

Steps a. and b. of the definition given for multiple assignment
under RM Prescription 21 in Chapter 4 are applied to the <attribute

Copyright © 2005 C. J. Date and Hugh Darwen page 5.21

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

assign commalist>. The result of that application is an <attribute
assign commalist> in which each <attribute assign> is of the form

Ai := exp

for some Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the <tuple update>

UPDATE TT (Ai := X, Aj := Y)

where i g j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to deal
with other cases are straightforward.) This <tuple update> is
equivalent to the following <tuple assign>:

TT := UPDATE TT (Ai := X, Aj := Y)

(The expression on the right side here is a <tuple substitute>
invocation.)

<tuple comp>
::= <tuple exp> <tuple comp op> <tuple exp>

| <tuple exp> ∈ <relation exp>
| <tuple exp> ∉ <relation exp>

Tuple comparisons are a special case of the syntactic category
<bool exp>. The symbol "∈ " ("epsilon") denotes the set membership
operator; it can be pronounced "belongs to" or "is a member of" or
just "[is] in." The expression t ∉ r is defined to be
semantically equivalent to the expression NOT(t ∈ r).

<tuple comp op>
::= = | g

RELATIONAL OPERATIONS

<relation nonwith exp>
::= <relation var ref>

| <relation op inv>
| (<relation exp>)

<relation op inv>
::= <user op inv>

| <built-in relation op inv>

<built-in relation op inv>
::= <relation selector inv>

| <THE_ op inv>
| <attribute extractor inv>
| <project>
| <n-adic other built-in relation op inv>
| <monadic or dyadic other built-in relation op inv>

<relation selector inv>
::= RELATION [<heading>] { <tuple exp commalist> }

Copyright © 2005 C. J. Date and Hugh Darwen page 5.22

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

| TABLE_DEE
| TABLE_DUM

If the keyword RELATION is specified explicitly, (a) <heading>
must be specified if <tuple exp commalist> is empty; (b) every
<tuple exp> in <tuple exp commalist> must have the same heading;
(c) that heading must be exactly as defined by <heading> if
<heading> is specified. TABLE_DEE and TABLE_DUM are shorthand for
the <relation selector inv>s RELATION{}{TUPLE{}} and RELATION{}{},
respectively (see RM Prescription 10 in Chapter 6 for further
explanation).

<project>
::= <relation exp>

{ [ALL BUT] <attribute ref commalist> }

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>.

<n-adic other built-in relation op inv>
::= <n-adic union> | <n-adic disjoint union>

| <n-adic intersect> | <n-adic join>

<n-adic union>
::= UNION [<heading>] { <relation exp commalist> }

Here (a) <heading> must be specified if <relation exp
commalist> is empty; (b) every <relation exp> in <relation exp
commalist> must have the same heading; (c) that heading must be
exactly as defined by <heading> if <heading> is specified. The
same remarks apply to <n-adic disjoint union> and <n-adic
intersect>, q.v.

<n-adic disjoint union>
::= D_UNION [<heading>] { <relation exp commalist> }

The relations denoted by the <relation exp>s must be pairwise
disjoint.

<n-adic intersect>
::= INTERSECT [<heading>] { <relation exp commalist> }

If the <relation exp commalist> is empty, the <n-adic
intersect> evaluates to the "universal" relation of the applicable
type: i.e., the unique relation of that type that contains all
possible tuples with the applicable <heading>. In practice, the
implementation might want to outlaw, or at least flag, any
expression that requires such a value to be materialized.

<n-adic join>
::= JOIN { <relation exp commalist> }

<monadic or dyadic other built-in relation op inv>
::= <monadic other built-in relation op inv>

| <dyadic other built-in relation op inv>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.23

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<monadic other built-in relation op inv>
::= <rename> | <where> | <extend> | <wrap> | <unwrap>

| <group> | <ungroup> | <substitute> | <tclose>

<rename>
::= <relation exp> RENAME (<renaming commalist>)

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. The individual <renaming>s are executed
in sequence as written.

<where>
::= <relation exp> WHERE <bool exp>

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. Let r be the relation denoted by
<relation exp>. The <bool exp> is allowed to contain an <attribute
ref>, AR say, wherever a <selector inv> would be allowed. The
<bool exp> can be thought of as being evaluated for each tuple of r
in turn. If the <attribute name> of AR is that of an attribute of
r, then (for each such evaluation) AR denotes the corresponding
attribute value from the corresponding tuple; otherwise the <where>
must be contained in some expression in which AR is defined. Note:
The <where> operator of Tutorial D includes the restrict operator
of relational algebra as a special case.

<extend>
::= EXTEND <relation exp>

ADD (<extend add commalist>)

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. The individual <extend add>s are
executed in sequence as written.

<wrap>
::= <relation exp> WRAP (<wrapping commalist>)

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. The individual <wrapping>s are executed
in sequence as written.

<unwrap>
::= <relation exp> UNWRAP (<unwrapping commalist>)

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. The individual <unwrapping>s are
executed in sequence as written.

<group>
::= <relation exp> GROUP (<grouping commalist>)

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. The individual <grouping>s are executed
in sequence as written.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.24

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<grouping>
::= { [ALL BUT] <attribute ref commalist> }

AS <introduced name>

<ungroup>
::= <relation exp> UNGROUP (<ungrouping commalist>)

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. The individual <ungrouping>s are
executed in sequence as written.

<ungrouping>
::= <attribute ref>

The specified attribute must be of some relation type.

<substitute>
::= UPDATE <relation exp>

(<attribute assign commalist>)

Syntactically, a <substitute> is identical to a <relation
update>, except that it contains a <relation exp> in place of the
<relation target> (and optional WHERE <bool exp>) required in a
<relation update>. Let r be the relation denoted by the <relation
exp>, and let A1, A2, ..., An be the attributes of r. Every
<attribute assign>, AA say, in the <attribute assign commalist> is
syntactically identical to an <assign>, except that:

• The target of AA must be an <attribute target>, AT say.

• AT must identify, directly or indirectly, some Ai (i = 1, 2,
..., n).

• AA is allowed to contain an <attribute ref>, AR say, wherever a
<selector inv> would be allowed. AA can be thought of as being
applied to each tuple of r in turn. If the <attribute name> of
AR is that of some Ai (i = 1, 2, ..., n), then (for each such
application) AR denotes the corresponding attribute value from
the corresponding tuple; otherwise the <substitute> must be
contained in some expression in which the meaning of AR is
defined.

Steps a. and b. of the definition given for multiple assignment
under RM Prescription 21 in Chapter 4 are applied to the <attribute
assign commalist>. The result of that application is an <attribute
assign commalist> in which each <attribute assign> is of the form

Ai := exp

for some Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the expression

UPDATE r (Ai := X, Aj := Y)

where i g j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to deal

Copyright © 2005 C. J. Date and Hugh Darwen page 5.25

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

with other cases are straightforward.) This expression is
equivalent to the following:

((EXTEND r ADD (X AS Bi, Y AS Bj)) { ALL BUT Ai, Aj })
RENAME (Bi AS Bk, Bj AS Aj, Bk AS Ai)

Here Bi, Bj, and Bk are arbitrary distinct names that are different
from all existing attribute names in r.

<tclose>
::= TCLOSE <relation exp>

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. Furthermore, it must denote a relation
of degree two, and the attributes of that relation must both be of
the same type.

<dyadic other built-in relation op inv>
::= <dyadic union> | <dyadic disjoint union>

| <dyadic intersect> | <minus> | <dyadic join>
| <compose> | <semijoin> | <semiminus>
| <divide> | <summarize>

<dyadic union>
::= <relation exp> UNION <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s, except that either or both can be another
<dyadic union>.

<dyadic disjoint union>
::= <relation exp> D_UNION <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s, except that either or both can be another
<dyadic disjoint union>. The relations denoted by the <relation
exp>s must be disjoint.

<dyadic intersect>
::= <relation exp> INTERSECT <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s, except that either or both can be another
<dyadic intersect>.

<minus>
::= <relation exp> MINUS <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s.

<dyadic join>
::= <relation exp> JOIN <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s, except that either or both can be another
<dyadic join>.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.26

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<compose>
::= <relation exp> COMPOSE <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s.

<semijoin>
::= <relation exp> SEMIJOIN <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s. The keyword SEMIJOIN can alternatively be
spelled MATCHING.

<semiminus>
::= <relation exp> SEMIMINUS <relation exp>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s. The keyword SEMIMINUS can alternatively be
spelled NOT MATCHING.

<divide>
::= <relation exp> DIVIDEBY <relation exp> <per>

The <relation exp>s must not be <monadic or dyadic other built-
in relation op inv>s.

<per>
::= PER (<relation exp> [, <relation exp>])

Reference [34] defines two distinct "divide" operators that it
calls the Small Divide and the Great Divide, respectively. In
Tutorial D, a <divide> in which the <per> contains just one
<relation exp> is a Small Divide, a <divide> in which it contains
two is a Great Divide. See RM Prescription 18 in Chapter 6 for
further explanation.

<summarize>
::= SUMMARIZE <relation exp> [<per or by>]

ADD (<summarize add commalist>)

The <relation exp> must not be a <monadic or dyadic other
built-in relation op inv>. Omitting <per or by> is equivalent to
specifying PER (TABLE_DEE). The individual <summarize add>s are
executed in sequence as written.

<per or by>
::= <per>

| BY { [ALL BUT] <attribute ref commalist> }

Let r be the relation to be summarized. If <per> is specified,
it must contain exactly one <relation exp>. Let pr be the relation
denoted by that <relation exp>. Then every attribute of pr must be
an attribute of r. Specifying BY {A1,A2,...,An} is equivalent to
specifying PER (r{A1,A2,...,An}).

<summarize add>
::= <summary> AS <introduced name>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.27

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<summary>
::= <summary spec> ([<integer exp>,]

[<scalar exp>])

Let r and pr be as defined under the production rule for <per
or by>. Then:

• The <integer exp> and following comma must be specified if and
only if the <summary spec> is EXACTLY or EXACTLYD. The
<integer exp> is allowed to include an <attribute ref>, IAR
say, wherever a <selector inv> would be allowed. If the
<attribute name> of IAR is that of an attribute of pr, then IAR
denotes the corresponding attribute value from some tuple of
pr; otherwise the <summary> must be contained in some
expression in which IAR is defined.

• The <scalar exp> must be specified if and only if the <summary
spec> is not COUNT. The <scalar exp> is allowed to include an
<attribute ref>, SAR say, wherever a <selector inv> would be
allowed. If the <attribute name> of SAR is that of an
attribute of r, then SAR denotes the corresponding attribute
value from some tuple of r; otherwise the <summary> must be
contained in some expression in which SAR is defined.

For SUM, SUMD, AVG, and AVGD, the value denoted by <scalar exp>
must be of some type for which the operator "+" is defined; for MAX
and MIN, it must be of some ordinal type; for AND, OR, XOR,
EXACTLY, and EXACTLYD, it must be of type BOOLEAN; for UNION,
D_UNION, and INTERSECT, it must be of some relation type. Observe
that <summary> and <agg op inv> are not the same thing, although
the type of any given <summary> is the same as that of its <agg op
inv> counterpart.

<summary spec>
::= COUNT | COUNTD | SUM | SUMD | AVG | AVGD | MAX | MIN

| AND | OR | XOR | EXACTLY | EXACTLYD
| UNION | D_UNION | INTERSECT

The suffix "D" ("distinct") in COUNTD, SUMD, AVGD, and EXACTLYD
means "eliminate redundant duplicate values before performing the
summarization." COUNT and COUNTD return a result of type INTEGER;
SUM, SUMD, AVG, AVGD, MAX, MIN, UNION, D_UNION, and INTERSECT
return a result of the same type as the value denoted by the
applicable <scalar exp>;9 AND, OR, XOR, EXACTLY, and EXACTLYD
return a result of type BOOLEAN. The <summary spec>s AND and OR
can alternatively be spelled ALL and ANY, respectively.

9 It might be preferable in practice to define the <summary spec>s AVG and AVGD
in such a way that, e.g., taking the average of a collection of integers returns
a rational number. We do not do so here merely for reasons of simplicity.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.28

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<relation assign>
::= <relation target> := <relation exp>

| <relation insert>
| <relation delete>
| <relation update>

<relation target>
::= <relation var ref>

| <relation THE_ pv ref>

<relation THE_ pv ref>
::= <THE_ pv name> (<scalar target>)

The <possrep component> corresponding to <THE_ pv name> must be
of some relation type. Note: Let rx be the <relation exp>
appearing in the <virtual relation var def> that defines some
virtual relvar V. Then it would be possible, assuming V is
updatable (see Appendix E), to allow rx to serve as a relation
pseudovariable also. However, this possibility is not reflected in
the grammar defined in this chapter.

<relation insert>
::= INSERT <relation target> <relation exp>

<relation delete>
::= DELETE <relation target> [WHERE <bool exp>]

Let the <relation target> be RT. The <bool exp> is allowed to
contain an <attribute ref>, AR say, wherever a <selector inv> would
be allowed. The <bool exp> can be thought of as being evaluated
for each tuple of RT in turn. If the <attribute name> of AR is
that of an attribute of RT, then (for each such evaluation) AR
denotes the corresponding attribute value from the corresponding
tuple; otherwise the <relation delete> must be contained in some
expression in which the meaning of AR is defined.

<relation update>
::= UPDATE <relation target> [WHERE <bool exp>]

(<attribute assign commalist>)

Let RT be the <relation target>, and let A1, A2, ..., An be the
attributes of RT. The <bool exp> is allowed to contain an
<attribute ref>, AR say, wherever a <selector inv> would be
allowed. The <bool exp> can be thought of as being evaluated for
each tuple of RT in turn. If the <attribute name> of AR is that of
some Ai (i = 1, 2, ..., n), then (for each such evaluation) AR
denotes the corresponding attribute value from the corresponding
tuple; otherwise the <relation update> must be contained in some
expression in which the meaning of AR is defined. Every <attribute
assign>, AA say, in the <attribute assign commalist> is
syntactically identical to an <assign>, except that:

• The target of AA must be an <attribute target>, AT say.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.29

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

• AT must identify, directly or indirectly, some Ai (i = 1, 2,
..., n).

• AA is allowed to contain an <attribute ref>, AR say, wherever a
<selector inv> would be allowed. AA can be thought of as being
applied to each tuple of r in turn. If the <attribute name> of
AR is that of some Ai (i = 1, 2, ..., n), then (for each such
application) AR denotes the corresponding attribute value from
the corresponding tuple; otherwise the <relation update> must
be contained in some expression in which the meaning of AR is
defined.

Steps a. and b. of the definition given for multiple assignment
under RM Prescription 21 in Chapter 4 are applied to the <attribute
assign commalist>. The result of that application is an <attribute
assign commalist> in which each <attribute assign> is of the form

Ai := exp

for some Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the <relation update>

UPDATE RT WHERE b (Ai := X, Aj := Y)

where i g j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to deal
with other cases are straightforward.) This <relation update> is
equivalent to the following <relation assign>:

RT := (RT WHERE NOT (b))
UNION
(UPDATE RT WHERE b (Ai := X, Aj := Y))

The third line here consists of a <substitute> invocation in
parentheses.

<relation comp>
::= <relation exp> <relation comp op> <relation exp>

Relation comparisons are a special case of the syntactic
category <bool exp>.

<relation comp op>
::= = | g | _ | ` | q | r

Note: The symbols "`" and "_" denote "subset of" and "proper
subset of," respectively; the symbols "r" and "q" denote "superset
of" and "proper superset of," respectively.

RELATIONS AND ARRAYS

The Third Manifesto prohibits tuple-at-a-time retrieval from a
relation as supported by, e.g., FETCH via a cursor in SQL. But

Copyright © 2005 C. J. Date and Hugh Darwen page 5.30

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Tutorial D does allow a relation to be mapped to a one-dimensional
array (of tuples), so an effect somewhat analogous to such tuple-
at-a-time retrieval can be obtained, if desired, by first
performing such a mapping and then iterating over the resulting
array.10 But we deliberately adopt a very conservative approach to
this part of the language. A fully orthogonal language would
support arrays as "first-class citizens"──implying support for a
general ARRAY type generator, and arrays of any number of
dimensions, and array expressions, and array assignment, and array
comparisons, and so on. However, to include such extensive support
in Tutorial D would complicate the language unduly and might well
obscure more important points. For simplicity, therefore, we
include only as much array support here as seems absolutely
necessary; moreover, most of what we do include is deliberately
special-cased. Note in particular that we do not define a
syntactic category called <array type>.

<array var def>
::= VAR <array var name> ARRAY <tuple type>

Let A be a Tutorial D array variable; then the value of A at
any given time is a one-dimensional array containing zero or more
tuples all of the same type. If it contains at least one, the
lower bound is one, otherwise it and the upper bound are both zero.
Let the values of A at times t1 and t2 be a1 and a2, respectively.
Then a1 and a2 need not necessarily contain the same number of
tuples, and A's upper bound thus varies with time. Note that the
only way A can acquire a new value is by means of a <relation get>
(see below); in practice, of course, additional mechanisms will be
desirable, but we do not specify any such mechanisms here.

<relation get>
::= LOAD <array target> FROM <relation exp>

ORDER (<order item commalist>)

<array target>
::= <array var ref>

<array var ref>
::= <array var name>

Points arising:

• Tuples from the relation denoted by <relation exp> are loaded
into the array variable designated by <array target> in the
order defined by the ORDER specification. If <order item
commalist> is empty, tuples are loaded in an implementation-
defined order.

10 In accordance with RM Proscription 7, Tutorial D supports nothing at all
analogous to SQL's tuple-at-a-time update operators (i.e., UPDATE or DELETE
"WHERE CURRENT OF cursor").

Copyright © 2005 C. J. Date and Hugh Darwen page 5.31

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

• The headings associated with <array target> and <relation exp>
would normally have to be the same. But it would be possible,
and perhaps desirable, to allow the former to be a proper
subset of the latter. Such a feature could allow the sequence
in which tuples were loaded into the array variable to be
defined in terms of attributes whose values were not themselves
to be retrieved──thereby allowing, e.g., retrieval of employee
numbers and names in salary order without at the same time
actually retrieving those salaries.

• LOAD is really assignment, of a kind (in particular, it has the
effect of replacing whatever value the target previously had).
However, we deliberately do not use assignment syntax for it
because it effectively involves an implicit type conversion
(i.e., a coercion) between a relation and an array. We have
already given our reasons in Chapter 3 for not wishing to
support coercions; in the case at hand, therefore, we prefer to
define a new operation (LOAD), with operands that are
explicitly defined to be of different types, instead of relying
on conventional assignment plus coercion.

<order item>
::= <direction> <attribute ref>

A useful extension in practice might be to allow <scalar exp>
in place of <attribute ref> here.

<direction>
::= ASC | DESC

<relation set>
::= LOAD <relation target> FROM <array var ref>

The array identified by <array var ref> must not include any
duplicate tuples.

We also need a new kind of <tuple exp> and an <array
cardinality> operator (a special case of <integer exp>):

<tuple exp>
::= ... all previous possibilities, together with:

| <array var ref> (<subscript>)

<subscript>
::= <integer exp>

<array cardinality>
::= COUNT (<array var ref>)

STATEMENTS

<statement>
::= <statement body> ;

Copyright © 2005 C. J. Date and Hugh Darwen page 5.32

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<statement body>
::= <previously defined statement body>

| <begin transaction> | <commit> | <rollback>
| <call> | <return> | <case> | <if> | <do> | <while>
| <leave> | <no op> | <compound statement body>

<previously defined statement body>
::= <assignment>

| <user op def> | <user op drop>
| <user scalar type def> | <user scalar type drop>
| <scalar var def> | <tuple var def>
| <relation var def> | <relation var drop>
| <constraint def> | <constraint drop>
| <array var def> | <relation get> | <relation set>

<begin transaction>
::= BEGIN TRANSACTION

BEGIN TRANSACTION can be issued when a transaction is in
progress. The effect is to suspend execution of the current
transaction and to begin a new ("child") transaction (see OO
Prescription 5 in Chapter 8 for further explanation). COMMIT or
ROLLBACK terminates execution of the transaction most recently
begun, thereby reinstating as current──and continuing execution
of──the suspended "parent" transaction, if any. Note: An
industrial strength D might usefully allow BEGIN TRANSACTION to
assign a name to the transaction in question and then require
COMMIT and ROLLBACK to reference that name explicitly. However, we
choose not to specify any such facilities here.

<commit>
::= COMMIT

<rollback>
::= ROLLBACK

<call>
::= CALL <user op inv>

The user-defined operator being invoked must be an update
operator specifically. Arguments corresponding to parameters that
are subject to update must be specified as <scalar target>s, <tuple
target>s, or <relation target>s, as applicable.

<return>
::= RETURN [<exp>]

The <exp> is required for a read-only operator and prohibited
for an update operator. Note: An update operator need not contain
a <return> at all, in which case an implicit <return> is executed
when the END OPERATOR is reached.

<case>
::= CASE ;

<when def list>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.33

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

[ELSE <statement>]
END CASE

<when def>
::= WHEN <bool exp> THEN <statement>

<if>
::= IF <bool exp> THEN <statement>

[ELSE <statement>]
END IF

<do>
::= [<statement name> :]

DO <scalar var ref> :=
<integer exp> TO <integer exp> ;
<statement>

END DO

<while>
::= [<statement name> :]

WHILE <bool exp> ;
<statement>

END WHILE

<leave>
::= LEAVE <statement name>

A variant of <leave> that merely terminates the current
iteration of the loop and begins the next might be useful in
practice.

<no op>
::= ... an empty string

<compound statement body>
::= BEGIN ; <statement list> END

One final point to close this section: Elsewhere in this book,
we often make use of "end of statement," "statement boundary," and
similar expressions to refer to the time when integrity checking is
done, among other things. In such contexts, "statement" is to be
understood, in Tutorial D terms, to mean a <statement> that
contains no other <statement>s nested inside itself; i.e., it is
not a <case>, <if>, <do>, <while>, or compound statement.

RECENT LANGUAGE CHANGES

There are a number of differences between Tutorial D as described
in the present chapter and the version of the language defined in
this book's predecessor (reference [83]). For the benefit of
readers who might be familiar with that earlier version, we
summarize the main differences here.

• The previous version allowed certain braces or parentheses to
be omitted if what was contained within those braces or

Copyright © 2005 C. J. Date and Hugh Darwen page 5.34

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

parentheses consisted of just one item (or sometimes no item at
all). The present version does not.

• In many places the previous version required some list or
commalist to be nonempty where the present version does not.

• The previous version allowed possrep component names to be
omitted, but the present version does not.

• The ability has been added (a) to define a tuple variable to
have the same heading as a specified relation expression and
(a) to define a relvar to have the same heading as a specified
tuple expression.

• Support for the boolean operators XOR and EXACTLY has been
added. For AND, OR, and XOR, both infix (dyadic) and prefix
(n-adic) syntax are supported (of course, EXACTLY is
intrinsically n-adic).

• Ordinal types are now explicitly declared as such.

• Update operators are no longer regarded as (or limited to
being) scalar; thus, scalar, tuple, and relation parameters can
all be subject to update and identified as such in the UPDATES
specification. Update operators, but not read-only operators,
can also directly update variables that are not local to the
operator in question.

• The commalist of <assign>s in UPDATE (various forms) is now
enclosed in parentheses instead of braces.

• BASE has been introduced as an alternative spelling for REAL.

• The keywords LOCAL and GLOBAL on <application relation var
def>s have been replaced by PRIVATE and PUBLIC, respectively.

• An INIT specification is now supported for REAL (or BASE) and
PRIVATE relvars.

• INIT specifications can now be used to determine the type of
the variable being declared.

• The initializing expression in INIT is now enclosed in
parentheses, as is the defining expression in a virtual relvar
definition.

• A new form of <scalar assign> has been added, using the keyword
UPDATE.

• For syntactic reasons, tuple join has been replaced by tuple
union (semantically, of course, the operators are equivalent).

• Support for disjoint union (D_UNION) has been added.

• Prefix (n-adic) versions of union (including tuple union),
disjoint union, intersect, and join are now supported.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.35

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

• MATCHING and NOT MATCHING have been introduced as alternative
spellings for SEMIJOIN and SEMIMINUS, respectively.

• The operators <substitute>, <tuple substitute>, and <tuple
compose> have been introduced.

• A BY form of SUMMARIZE has been added.

• AND and OR have been introduced as preferred spellings for ALL
and ANY, respectively. COUNT is now written COUNT ().
Aggregate operators XOR, EXACTLY, UNION, D_UNION, and INTERSECT
have been introduced. All of the aggregate operators have both
(a) n-adic forms and (b) "summary" analogs in SUMMARIZE. Also,
the aggregate operators COUNT, SUM, AVG, and EXACTLY have
additional "summary" analogs COUNTD, SUMD, AVGD, and EXACTLYD,
for which redundant duplicate values are eliminated before the
summarization is done.

• The IN operator is now written ∈ .

• GROUP and UNGROUP now support "multiple" grouping and
ungrouping.

• The syntax of the ordering specification on <relation get> has
changed.

• The <with> statement has been dropped and WITH expressions have
been clarified.

• A number of minor corrections have been made.

In addition to all of the foregoing, many syntactic category
names and production rules have been revised (in some cases
extensively). However, those revisions in themselves are not
intended to induce any changes in the language being defined.

A REMARK ON SYNTAX

You might have noticed that the syntax of operator invocations in
Tutorial D is not very consistent. To be specific:

• User-defined operators use a prefix style, with positional
argument/parameter matching.

• Built-in operators, by contrast, sometimes use an infix style
("+", "=", MINUS, etc.), sometimes a prefix style (MAX,
EXACTLY, n-adic JOIN, etc.).

• Some of those built-in operators rely on positional
argument/parameter matching ("+", MINUS, MAX, EXACTLY, etc.),
while others do not11 ("=", n-adic JOIN, etc.). Also, those
that rely on positional matching use parentheses to enclose
their arguments, while those that do not use braces.

11 Or, at least, the order in which the arguments are specified in such cases is
immaterial.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.36

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

• Some operators seem to use a mixture of prefix and infix styles
(SUMMARIZE, DIVIDEBY, etc.), or even a wholly private style of
their own (project, THE_ operators, CASE, CAST, etc.).

• Finally, it could be argued that reliance on ordinal position
for argument/parameter matching violates the spirit, if not the
letter, of RM Proscription 1 (which prohibits the use of
ordinal position to distinguish the attributes of a
relation)──especially in the case of scalar selectors, where
the sequence of defining parameters (in the corresponding
possrep definition) should not matter but does.

Given all of the above, the possibility of adopting a more
uniform style seems worth exploring. Now, we deliberately did no
such thing in earlier sections of this chapter because we did not
want Tutorial D to look even more outlandish than it might do
already. Now, however, we can at least offer some thoughts on the
subject. The obvious approach would be to do both of the
following:

• Permit (if not mandate) a prefix style for everything

• Perform argument/parameter matching on the basis of names
instead of position

In the case of scalar selectors, for example, we might propose

CARTESIAN { Y 2.5, X 5.0 }

as a possible replacement for

CARTESIAN (5.0, 2.5)

(note in particular that the parentheses have been replaced by
braces). In other words, the suggestion is that a general <op inv>
("operator invocation") should take the form

<op name> { <argument spec commalist> }

where <op name> identifies the operator in question and <argument
spec> takes the form

<parameter name> <exp>

There are some difficulties, however. For one thing, this new
prefix style seems clumsier than the old in the common special case
in which the operator takes just one parameter, as with (e.g.) SIN,
COS, and sometimes COUNT. For another, some common operators
(e.g., "+", "=", ":=") have names that do not abide by the usual
rules for forming identifiers. For a third, built-in operators, at
least as currently defined, have no user-known parameter names.
Now, we could perhaps fix this last problem by introducing a
convention according to which those names are simply defined to be
P1, P2, P3, etc., thus making (e.g.) expressions like this one
valid:

JOIN { P1 r1 , P2 r2 , P3 r3 , ... , P49 r49 }

Copyright © 2005 C. J. Date and Hugh Darwen page 5.37

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Again, however, the new syntax in this particular case seems
clumsier than the old, since JOIN is associative and the order in
which the arguments are specified makes no difference.

Another difficulty arises in connection with examples like this
one:

MINUS { P1 r1 , P2 r2 }

Here it becomes important to know which is the P1 parameter and
which the P2 (r1 MINUS r2 and r2 MINUS r1 are not equivalent, in
general). Some additional apparatus would be required to
communicate such information to the user.

EXERCISES

1. Write a set of Tutorial D data definitions for the suppliers-
and-parts database (relvar definitions only; Exercise 14 in
Chapter 3 already asked for the type definitions).

2. Define virtual relvars for (a) suppliers with status greater
than ten; (b) shipments of red parts; (c) parts not available
from any London supplier.

3. Distinguish between database and application relvars.

4. Is the boolean operator XOR associative?

5. Consider the prefix (n-adic) versions of AND, OR, and XOR.
What happens if the specified <bool exp commalist> contains
just one <bool exp>? What if it contains none at all?

6. The expression XOR {<bool exp commalist>} is defined to
evaluate to TRUE if and only if an odd number of the specified
<bool exp>s evaluate to TRUE. Justify this definition.

7. What does the expression EXACTLY (0,{<bool exp commalist>})
return? What if the <bool exp commalist> is empty?

8. Give Tutorial D formulations for the following updates to the
suppliers-and-parts database:

a. Insert a new shipment with supplier number S1, part number
P1, quantity 500.

b. Insert a new supplier S10 (name and city Smith and New York,
respectively; status not yet known).

c. Delete all blue parts.

d. Delete all parts for which there are no shipments.

e. Change the color of all red parts to orange.

f. Replace all appearances of supplier number S1 by appearances
of supplier number S9 instead.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.38

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

In each case, give two formulations, one using INSERT, DELETE,
or UPDATE (as applicable) and one using a pure relational
assignment.

9. The Tutorial D grammar presented in this chapter involves
numerous lists and commalists. In every case, what happens if
the list or commalist is empty?

10. The LOAD statement involves an ORDER specification. Considered
as an operator in its own right, however, ORDER is rather
unusual. In what respects?

11. Consider the following type definition:

TYPE ELLIPSE POSSREP { A RATIONAL, B RATIONAL, CTR POINT
CONSTRAINT A ≥ B } ;

(This is a simplified version of an example we will be using
extensively in later chapters.) Now let E be a variable of
type ELLIPSE, and consider the following two statements:

a. THE_A (E) := 7.0 , THE_B (E) := 5.0 ;

b. UPDATE E (A := 7.0 , B := 5.0) ;

Is there any logical difference between these statements? If
so, what is it?

12. Data definition operations (for objects in the database, at
least) cause updates to be made to the catalog. But the
catalog is only a collection of relvars, just like the rest of
the database; so could we not just use the familiar update
operations INSERT, DELETE, and UPDATE to update the catalog
appropriately? Discuss.

13. Design an extension to the syntax of the Tutorial D SUMMARIZE
operator that would make, e.g., an expression of the form

(MAX (X) - MIN (Y)) / 2

a valid <summary>.

14. Suppose we are given the following definitions:

TYPE POINT POSSREP { X RATIONAL, Y RATIONAL } ;
TYPE CIRCLE POSSREP { R RATIONAL, CTR POINT } ;
TYPE COLORED_CIRCLE POSSREP { CIR CIRCLE, COL COLOR } ;

VAR CC COLORED_CIRCLE ;

The following is a valid assignment statement with variable CC
as target:

UPDATE CC (UPDATE CIR (UPDATE CTR (X := 2 * X))) ;

Show a completely expanded version of this statement that makes
no use of the UPDATE shorthand.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.39

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

*** End of Chapter 5 ***

