Chapter 5

Tutor i al D

I ntroduction

Common constructs
Scal ar definitions
Tupl e definitions

Rel ati onal definitions
Scal ar operations
Tupl e operations

Rel ati onal operations
Rel ati ons and arrays
St atenent s

Recent | anguage changes
A remark on syntax
Exer ci ses

I NTRODUCTI ON

Tutorial Dis a conmputationally conplete programm ng | anguage with
fully integrated database functionality. It is deliberately not
meant to be "industrial strength"; rather, it is a "toy" |anguage,
whose principal purpose is to serve as a teaching vehicle. As a
consequence, many features that would be required in an industrial -
strength | anguage are intentionally omtted. (Extending Tutorial D
to incorporate such features (thereby turning it into what m ght be
called Industrial D) could be a worthwhile project.) For exanple,
there is no support for any of the foll ow ng:

e Sessions and connections

e Any formof comrunication with the outside world (1/0O
facilities, etc.)

« Exception handling and feedback information

In connection with this last point, however, we should at | east
say that we expressly do not want a form of exception-handling that
requires the user to pass a feedback argunent on each and every
operator invocation (such an approach would effectively force al
operators to be update operators).

For obvi ous reasons, there is also no support for any of the
items listed in the subsection "Topics Deliberately Ontted" in
Chapter 1 (security and authorization, triggered procedures, and so
forth). Nor is there any support for type inheritance; however,
extensions to deal with this latter topic are described in Part |V
of this book.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.1

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

In addition to the foregoing, many m nor details, both
syntactic and semantic, that would require precise specification in
an industrial strength |anguage have al so been ignored. For
exanpl e, details of the followng are all omtted:

» Language characters, identifiers, scope of nanes, etc.

+ Reserved words (if any), comments,! deliniters and separators,
etc.

e (Operator precedence rules (except for a couple of inportant
speci al cases)

e "QObvious" syntax rules (e.g., distinct paraneters to the sane
oper at or nust have di stinct nanes)

On the other hand, the |anguage is nmeant to be well designed,
as far as it goes. |Indeed, it nust be—for otherwise it would not
be a valid D, since it would violate RM Prescription 26 (which
requires every D to be constructed according to principles of good
| anguage design).

As already noted, Tutorial D is conputationally conplete,
nmeani ng that entire applications can be witten in the | anguage; it
is not just a "data subl anguage"” that relies on some host |anguage
to provide the necessary conputational capabilities. |In accordance
with the assunptions spelled out in Chapter 1, noreover, it is also
(l'i ke nost |anguages currently in w despread use) inperative in
style—though it is worth nmentioning that the "data subl anguage”
portion, being based as it is on relational algebra, can in fact be
regarded as a functional |anguage if considered in isolation.” |In
practice we woul d hope that this portion of the |anguage woul d be
inmplenmented in an interactive formas well as in the formof a
progranm ng | anguage per se; in other words, we endorse the dual -
node principle as described in, e.g., reference [76].

Tutorial Dis a relational |anguage, of course, but in sone
respects it can be regarded as an object |anguage as well. For one
thing, it supports the concept of single-level storage (see OO Very
Strong Suggestion 3). Mre inportant, it supports what is probably
the nost fundanental feature of object |anguages: nanely, it allows
users to define their own types. And since there is no reliance on
a host | anguage, there is no "inpedance m smatch” between the types
avai l abl e i nside the database and those avail abl e outside (i.e.,
there is no need to map between the arbitrarily conplex types used
in the database and the probably rather sinple types provided by

YI'n our exanpl es we show comments as text strings bracketed by "/*" and "*/"
delimters.

>More precisely, the read-only features of the data subl anguage portion can be
so regarded. Note: It is well known that a relational data subl anguage can be
based on either relational algebra or relational calculus. It is also well
known that an algebraic style is intuitively preferable for sone tasks, a
calculus style for others. As already nentioned, Tutorial D uses an al gebraic
style, for definiteness.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.2

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

some conventional host |anguage).® In other words, we agree with
the object community's conplaint that there is a serious problemin
trying to build an interface between a DBM5 that all ows user-
defined types and a programm ng | anguage that does not. For
exanple, if the database contains a value of type POLYGON, then in
Tutorial D that value can be assigned to a |local variable also of
type POLYGON—t here is no need to break it down into, say, a
sequence of nunber pairs representing the (x,y)-coordinates of the
vertices of the polygon in question. Altogether, then, it seens
fair to characterize Tutorial D as a true "object/relational”

| anguage (inasnuch as that term has any objective neaning!).

Tutorial D has been designed to support all of the
prescriptions and proscriptions of The Third Manifesto as defi ned
in Chapter 4. It deliberately does not support all of the "very
strong suggestions” nmentioned in that chapter, though it does
support some of them (possible extensions to deal with others are
considered briefly in Chapter 10). The |anguage is also
del i berately not neant to be mnimal in any sense—it includes
nunerous features that are really just shorthand for certain
conmbi nations of others. (This remark applies especially to its
rel ati onal support, as should already be clear from Chapter 2.)
However, it is at least true that the shorthands in question are
specifically designed to be shorthands [31]; i.e., the redundancies
are deliberate, and are included for usability reasons.

Most of the rest of this chapter consists of a BNF grammar for
Tutorial D. The grammar is defined by neans of what is essentially
standard BNF notation, except for a couple of sinplifying
extensions that we now explain. Let <xyz> denote an arbitrary
syntactic category (i.e., anything appearing on the |left side of
some BNF production rule). Then:

* The expression <xyz |list> denotes a sequence of zero or nore
<xyz>s in which each pair of adjacent <xyz>s is separated by at
| east one space.

* The expression <xyz commalist> denotes a sequence of zero or
nore <xyz>s in which each pair of adjacent <xyz>s is separated
by a comma (as well as, optionally, one or nore spaces before
the comma or after it or both).

Qobserve in particular that nost of the various lists and
commal i sts described in what follows are allowed to be enpty. The
effect of specifying an enpty list or conmalist is usually obvious;
for exanple, an <assignnent> for which the contained commalist of
<assign>s is enpty degenerates to a <no op> ("no operation").
Occasional Iy, however, there is sonething a little nore interesting

3Actually the terminpedance m smatch is used to nean several different things,
of which the nismatch referred to here, between database and | anguage types, is
only one.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.3

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

to be said about such cases (see Exercise 9 at the end of the
chapter).

Finally, a few m scell aneous points:

Al syntactic categories of the form<... nane> are defined to
be <identifier>s, barring explicit production rules to the
contrary. The category <identifier>in turnis termnal and is
not defined here.

A few of the production rules include an alternative on the
right side that consists of an ellipsis followed by plain text.
In such cases, the plain text is intended as an informal —i.e.,
nat ural | anguage—expl anati on of the syntactic category being
defined (or one formof that syntactic category).

* Sone of the production rules are acconpani ed by a prose
expl anation of certain additional syntax rules or the
correspondi ng semantics or both—»but only where such
expl anati ons seem necessary and have not already been given in
earlier chapters.* (For this reason anong others, the grammar
is not suitable for driving a nechanical parser, nor is it
meant to be; instead, it is neant to serve as an
understandabl e, albeit fairly formal, definition of the
constructs that are syntactically valid in the | anguage. A
grammar suitable for mechanical parsing can be found at the
website www. t het hi rdmani f est o. com)

* Please note that braces "{" and "}" in the grammar stand for
thensel ves; i.e., they are synbols in the | anguage bei ng
defined, not synbols of the netal anguage as they usually are.
To be nore specific, we use braces to encl ose conmalists of
items when the commalist in question is intended to denote a
set of sone kind, inplying that (a) the order in which the
itenms appear within that commlist is immterial and (b) if an
item appears nore than once, it is treated as if it appeared
just once (usually; the exceptions are EXACTLY and the n-adic
versions of COUNT, SUM AVG and D UNION, g.v., for which
repeated itens have significance). Note, therefore, that if
for sone <xyz> A and B are <xyz commal i st>s enclosed in braces
that differ only in the order in which the individual <xyz>s
appear, then A and B denote the sane thing and are regarded as
i nt er changeabl e.

» The | anguage defined by this grammar reflects the | ogica
di fference between expressions and statenents. An expression
denotes a value; it can be thought of as a rule for conputing
or determning the value in question. A statenent does not
denote a value; instead, it causes sone action to occur, such

“For a formal definition of the semantics of the relational al gebra operators in
particul ar, however, see Appendi x A

Copyright © 2005 C. J. Date and Hugh Darwen page 5.4

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

as assigning a value to sone variable or changing the fl ow of
contr ol

e As already noted, various extensions to the | anguage as defi ned
by this grammar are proposed later in the book (especially in
Part 1V). A syntactic sunmary of the entire
| anguage—i ncl udi ng the inheritance extensions fromPart |V,
but excludi ng extensions notivated nmerely by certain of the
suggestions in Chapter 10—can be found in Appendix I.

* Finally, the | anguage defined by this grammar constitutes a
significant revision of Tutorial D as defined in this book's
predecessor (reference [83]). For readers who m ght be
famliar with the earlier version, the section "Recent Language
Changes" (follow ng the sections on the gramrar per se)
sumari zes the nost inportant of those revisions.

COVMON CONSTRUCTS

<type>
= <scal ar type>
| <tuple type>

| <relation type>

<scal ar type>
L= <scal ar type nane>
| SAME_TYPE_AS (<scal ar exp>)

<tuple type>
= <tupl e type name>
| SAME_TYPE_AS (<tuple exp>)
| TUPLE SAME _HEADI NG _AS (<nonscal ar exp>)

<rel ation type>
L= <rel ati on type nanme>
| SAVE_TYPE_AS (<rel ation exp>)
| RELATI ON SAME_HEADI NG_AS (<nonscal ar exp>)

<user op def>
L= <user update op def>
| <user read-only op def>

<user update op def>
D= OPERATOR <user op nane> (<paraneter def commalist>)
UPDATES { <parameter name commalist> } ;
<st at ement >
END OPERATOR

The <paraneter def commalist> is enclosed in parentheses
i nstead of braces, as is the correspondi ng <argunment commalist> in
an invocation of the operator in question (see <user op inv>,
| ater), because we follow convention in relying on ordinal position

Copyright © 2005 C. J. Date and Hugh Darwen page 5.5

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

for argunent/paranmeter matching.® The <paraneter nane conmali st>
identifies parameters that are subject to update.

In practice, it mght be desirable to support an "external"
form of <user update op def> as well. Syntactically, such a <user
update op def> would include, not a <statenent> as above, but
rather a reference to an external file that contains the code that
i npl ements the operator (possibly witten in sone different
| anguage). It mght also be desirable to support a form of <user
update op def> that includes neither a <statenent> nor such an
external reference; such a <user update op def> would define nerely
what is called a specification signature for the operator in
guestion, and the inplenentation code would then have to be defined
el sewhere. Splitting operator definitions into separate pieces in
this way is likely to prove particularly useful if type inheritance
is supported (see Part 1V). Anal ogous remarks apply to <user read-
only op def>s as well, q.v.

<par anet er def>
;.= <paraneter nanme> <type>

<user read-only op def>
L= OPERATOR <user op nane> (<paraneter def commalist>)
RETURNS <t ype> ;
<st at ement >
END OPERATOR

The <user op nane> denotes a scalar, tuple, or relationa
operator, depending on the specified <type>.

<user op inv>
L= <user op nanme> (<argunent commalist>)

<ar gunment >
ci= <exp>

<exp>
D= <scal ar exp>
| <nonscal ar exp>

<scal ar exp>
= <scal ar with exp>
| <scalar nonwith exp>

<nonscal ar exp>
L= <tupl e exp>
| <relation exp>

<tupl e exp>

®Observe that this remark is true of read-only as well as update operators. In
particular, it is true of scalar selector operators—that is, the argunents to a
<scal ar selector inv> are specified as a commalist in parentheses, even though
the correspondi ng paraneters are specified as a commalist in braces (see
<possrep def>, later; see also the section "A Remark on Syntax" at the end of
the chapter).

Copyright © 2005 C. J. Date and Hugh Darwen page 5.6

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

= <tuple with exp>
| <tuple nonwith exp>

<rel ati on exp>
= <relation with exp>
| <relation nonwith exp>

<scalar with exp>
::= WTH <nane intro conmalist> : <scal ar exp>

Let SVE be a <scalar with exp> and let NIC and SE be the <nane
intro conmal i st> and the <scal ar exp>, respectively, in SWE. The
i ndi vidual <nane intro>s in NIC are executed in sequence as
witten. As the next production rule shows, each such <nane intro>
i ncludes an <exp> and an <introduced name>. Let N be one of those
<nane intro>s, and let the <exp> and the <introduced nane> in N be
X and N, respectively. Then N denotes the val ue obtai ned by
evaluating X, and it can appear subsequently in SWE wherever the
expression (X)—i.e., X in parentheses—woul d be al |l owed.
Anal ogous remarks apply to <tuple with exp>s and <relation with
exp>s, q.V.

<name intro>
L= <exp> AS <introduced nanme>

<tuple with exp>
= WTH <nane intro conmalist> : <tuple exp>

<relation with exp>
::= WTH <nane intro conmalist> : <relation exp>

<user op drop>

L= DROP OPERATOR <user op nane>
<sel ector inv>

D= <scal ar sel ector inv>

| <tuple selector inv>
| <relation selector inv>

<scal ar var ref>
N <scal ar var nane>

<tuple var ref>
= <tupl e var nanme>

<rel ati on var ref>
N <relation var nane>

<attribute ref>
I <attribute name>

<possrep conponent ref>
;1= <possrep component nane>

<assi gnnment >
L= <assi gn conmmal i st >

Copyright © 2005 C. J. Date and Hugh Darwen page 5.7

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

The semantics of <assignment> are those of multiple assignnent,

as required and specified by RM Prescription 21.

<assi gn>
L= <scal ar assign>
| <tuple assign>
| <relation assign>

SCALAR DEFI NI TI ONS

<scal ar type nane>
;.= <user scalar type nanme>
| <built-in scalar type name>

<built-in scalar type name>
::= INTEGER | RATIONAL | CHARACTER | CHAR | BOCOLEAN

As indicated, Tutorial D supports the following built-in scalar

types:

| NTEGER (signed integers): literals expressed as an optionally
si gned decimal integer; usual arithnetic and conpari son
operators, with usual notation

RATI ONAL (signed rational nunbers): literals expressed as an
optionally signed deci mal mantissa (including a decimal point),
optionally followed by the letter E and an optionally signed
deci mal integer exponent (exanples: 5., 5.0, 17.5, -5.3E+2);
usual arithmetic and conpari son operators, with usual notation

CHARACTER or CHAR (varying-length character strings): literals
expressed as a sequence, enclosed in single quotes, of zero or
nore characters; usual string manipul ati on and conpari son
operators, with usual notation—"||" (concatenate), SUBSTR
(substring), etc. By the way, if you are famliar with SQ., do
not be msled here; the SQ data type CHAR corresponds to

fi xed-length character strings (the varying-length analog is
call ed VARCHAR), and an associ ated | ength—default one—nust be
specified as in, e.g., CHAR(25). Tutorial D does not support a
fi xed-length character string type.

BOOLEAN (truth values): literals TRUE and FALSE; usual

conpari son operators (= and %) and bool ean operators (AND, OR
NOT, etc.), with usual notation. Note that Tutorial D s
support for type BOOLEAN goes beyond that found in many

| anguages in at |east three ways:

1. It includes explicit support for the XOR operator (exclusive
OR). The expression a XOR b (where a and b are <bool exp>s)

is semantically identical to the expression a + b.

2. It supports n-adic versions of the operators AND, OR and
XOR. The syntax is:

<n-adi ¢ bool op nane> { <bool exp commalist> }

Copyright © 2005 C. J. Date and Hugh Darwen page 5.8

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

The <n-adic bool op name> is AND, OR, or XOR. AND returns
TRUE if and only if all specified <bool exp>s evaluate to
TRUE. ORreturns FALSE if and only if all specified <bool
exp>s evaluate to FALSEE. XOR returns TRUE if and only if

t he nunber of specified <bool exp>s that evaluate to TRUE is
odd.

3. It supports an n-adic operator of the form
EXACTLY (<integer exp> { <bool exp commalist> })

Let the <integer exp> evaluate to N.°® Then the overal
expression evaluates to TRUE if and only if the nunber of
speci fied <bool exp>s that evaluate to TRUE is N Note: |If
t he nunber of specified <bool exp>s is zero—i.e., if the
<bool exp conmmalist> is enpty—the comm follow ng the

<i nteger exp> nust be omtted.

In practice we woul d expect a variety of other built-in scalar
types to be supported in addition to the foregoing: DATE, TI NE,
perhaps BIT (varying-length bit strings), and so forth. W omt
such types here as irrelevant to our main purpose.

<user scal ar type def>
L= <user scal ar root type def>

The syntactic category <user scalar root type def> is
i ntroduced nerely to pave the way for the inheritance support to be
di scussed in Part IV. Al types are root types in the absence of
i nheritance support.

<user scal ar root type def>
::= TYPE <user scalar type nane> [ORDI NAL]
<possrep def list>

<possrep def>
L= POSSREP [<possrep nane> |
{ <possrep conponent def commalist>
[<possrep constraint def> 1] }

<possrep conponent def>
L= <possrep conmponent name> <type>

No two distinct <possrep def>s within the sane <user scal ar
type def> can include a conponent with the sanme <possrep conponent
name>.

<possrep constraint def>
D= CONSTRAI NT <bool exp>

The <bool exp> nust not nention any variables, but <possrep
conmponent ref>s can be used to denote the correspondi ng conponents

® The detail ed syntax of <integer exp>s is not specified in this chapter;
however, we note that an <integer exp> is of course a nuneric expression and
hence a <scal ar exp> al so.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.9

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

of the applicable possible representation ("possrep”) of an
arbitrary value of the scalar type in question.

<user scal ar type drop>
D= DROP TYPE <user scal ar type nane>

<scal ar var def>
::= VAR <scal ar var nane> <scal ar type or init value>

<scal ar type or init val ue>
D= <scalar type> | INT (<scalar exp>)
| <scalar type> INNT (<scal ar exp>)

I f <scalar type> and the INIT specification both appear,

<scal ar exp> nust be of type <scalar type> If <scalar type>
appears, the scalar variable is of that type; otherwse it is of
the sane type as <scalar exp> |If the INIT specification appears,

the scalar variable is initialized to the value of <scal ar exp>;
otherwise it is initialized to an inplenentation-defined val ue.

TUPLE DEFI NI TI ONS
<tupl e type name>
::= TUPLE <headi ng>
<headi ng>
::= { <attribute commalist> }

<attribute>
= <attribute name> <type>

<tupl e var def>
.= VAR <tuple var nane> <tuple type or init value>

<tuple type or init val ue>
L= <tuple type> | INIT (<tuple exp>)
| <tuple type> INIT (<tuple exp>)

If <tuple type> and the INIT specification both appear, <tuple

exp> nust be of type <tuple type> If <tuple type> appears, the
tuple variable is of that type; otherwise it is of the sane type as
<tuple exp>. If the INIT specification appears, the tuple variable

is initialized to the value of <tuple exp> otherwise it is
initialized to an inplenentation-defined val ue.

RELATI ONAL DEFI NI TI ONS

<rel ati on type nanme>
L= RELATI ON <headi ng>

<rel ation var def>
- <dat abase rel ati on var def>
| <application relation var def>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.10

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

A <relation var def> defines a relation variable (i.e., a
relvar). In practice it mght be desirable to provide a way of
defining relation constants or "relcons"” also (see RM Prescription
14 in Chapter 6 for further discussion). Note that Tutorial D
al ready supports two built-in "relcons" called TABLE DEE and
TABLE DUM (see the section "Rel ational Operations," |ater).

<dat abase rel ati on var def>
- <real relation var def>
| <virtual relation var def>

A <dat abase rel ation var def> defines a database relvar—i.e.,
a relvar that is part of the database. |In particular, therefore,
it causes an entry to be made in the catalog. Note, however, that
nei t her dat abases nor catal ogs are explicitly nmentioned anywhere in
the syntax of Tutorial D

<real relation var def>
.= VAR <relation var nane>
REAL <relation type or init val ue>
<candi date key def list>

The keyword REAL can alternatively be spelled BASE. An enpty
<candi date key def list>is permtted, though not required, only if
(a) the <relation type or init value> specifies or includes INT
(<relation exp>) or (b) <relation type>is of the form SAVE_TYPE_AS
(<relation exp>); it is equivalent to a <candi date key def |ist>
that contains exactly one <candi date key def> for each key that can
be inferred by the systemfromthe <relation exp>in that INIT or
SAME_TYPE_AS specification (see RM Very Strong Suggestion 3 in
Chapter 10).

<relation type or init value>
L= <relation type>| INIT (<relation exp>)
| <relation type> INIT (<relation exp>)

An INIT specification can appear only if either REAL (or BASE)
or PRIVATE is specified for the relvar in question (see
<application relation var def>, |ater, for an explanation of
PRIVATE). If <relation type> and the INIT specification both

appear, <relation exp> nust be of type <relation type> If
<rel ation type> appears, the relvar is of that type; otherwi se it
is of the sane type as <relation exp> If and only if the relvar

is either real or private, then (a) if the INIT specification
appears, the relvar is initialized to the value of <relation exp>;
(b) otherwise it is initialized to the enpty relation of the
appropriate type.

<candi dat e key def>
L= KEY { <attribute ref conmalist> }

In accordance with the discussions in Chapter 2, we use the
unqual i fied keyword KEY to nmean a candi date key specifically.
Tutorial D does not explicitly support primary keys as such.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.11

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<virtual relation var def>
.= VAR <relation var nane> VIRTUAL (<rel ation exp>)
<candi date key def list>

The <rel ati on exp> nust nmention at |east one database rel var
and no other variables. An enpty <candi date key def list> is
equi valent to a <candi date key def list> that contains exactly one
<candi date key def> for each key that can be inferred by the system
from<relation exp> (see RM Very Strong Suggestion 3 in Chapter
10).

<application relation var def>
.= VAR <relation var nanme> <private or public>
<relation type or init value>
<candi date key def list>

An enpty <candi date key def list>is permtted, though not
required, only if (a) the <relation type or init value> specifies
or includes INIT (<relation exp>) or (b) <relation type> is of the
form SAME_TYPE _AS (<relation exp>); it is equivalent to a
<candi date key def list> that contains exactly one <candi date key
def> for each key that can be inferred by the systemfromthe
<relation exp>in that INNT or SAME _TYPE_AS specification (see RV
Very Strong Suggestion 3 in Chapter 10).

<private or public>
::= PRIVATE | PUBLIC

<rel ation var drop>
N DROP VAR <relation var ref>

The <rel ation var ref> nust denote a database relvar, not an
application one.

<constraint def>
D= CONSTRAI NT <constrai nt name> <bool exp>

A <constraint def> defines a database constraint. The <bool
exp> nmust not nention any variable that is not a database relvar.
(Tutorial D does not support the definition of constraints on
scal ar variables or tuple variables or application relvars, though
there is no | ogical reason why it should not do so.)

<constrai nt drop>
I DROP CONSTRAI NT <constrai nt nanme>

SCALAR OPERATI ONS

<scal ar nonwi th exp>
= <scal ar var ref>
| <scalar op inv>
| (<scal ar exp>)

<scal ar op inv>
D= <user op inv>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.12

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

| <built-in scalar op inv>

<built-in scalar op inv>
D= <scal ar selector inv>
| <THE_ op inv>
| <attribute extractor inv>
| <agg op inv>
| ... plus the usual possibilities

It is convenient to get "the usual possibilities" out of the
way first. By this term we nean the usual nuneric operators ("+"
"*" etc.), character string operators ("||", SUBSTR, etc.), and
bool ean operators, all of which we have already said are built-in
operators in Tutorial D. It follows that nuneric expressions,
character string expressions, and in particul ar bool ean
expressi ons—i . e., <bool exp>s—are all <scalar exp>s (and we
assune the usual syntax in each case). The followi ng are also
<scal ar exp>s:

e A special formof <bool exp> |S EMPTY (<relation exp>), which
returns TRUE if and only if the relation denoted by <relation
exp>is enpty. (In practice, it mght be useful to support an
I S NOT_EMPTY operator as well.)

» CAST expressions of the form CAST_AS T (<scal ar exp>), where T
is a scalar type and <scal ar exp> denotes a scal ar value to be
converted ("cast") to that type. Note: W use syntax of the
form CAST_AS T (...), rather than CAST (... AS T), because this
latter formraises "type TYPE" issues—e.g., what is the type
of operand T?—that we prefer to avoid.

* | F-THEN-ELSE and CASE expressions of the usual form (and we
assume wi thout going into details that tuple and relation
anal ogs of these expressions are avail abl e al so).

The syntax of <scal ar sel ector inv> has al ready been expl ai ned
(see Chapter 3 for several exanples). Note: Wether scalar
sel ectors are regarded as built-in or user-defined could be a
matter of sonme debate, but the point is uninportant for present
pur poses. Anal ogous remarks apply to THE_ operators and attribute
extractors al so (see the next two production rules).

<THE_ op inv>
.= <THE_ op nanme> (<scalar exp>)

We include this production rule in this section because in
practice we expect nost <THE_op inv>s to denote scal ar values. In
fact, however, a <THE_op inv> will be a <scalar exp> a <tuple
exp>, or a <relation exp> depending on the type of the <possrep
conponent > corresponding to <THE_ op nane>.

<attribute extractor inv>
L= <attribute ref> FROM <tupl e exp>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.13

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

We include this production rule in this section because in
practice we expect nost attributes to be scalar. |In fact, however,
an <attribute extractor inv> wll be a <scalar exp> a <tuple exp>,
or a <relation exp> depending on the type of <attribute ref>.

<agg op inv>
::= <agg op nanme> ([<integer exp>] <relation exp>
[, <attribute ref>1])

The <integer exp> and followi ng comma nust be specified if and
only if the <agg op nanme> is EXACTLY. The <attribute ref> nust be
omtted if the <agg op nanme> is COUNT; otherwise, it can be omtted
if and only if the <relation exp> denotes a relation of degree one,
in which case the sole attribute of that relation is assuned by
default. For SUM and AVG the attribute denoted by <attribute ref>
must be of sone type for which the operator "+" is defined; for MAX
and MN, it nust be of sone ordinal type; for AND, OR, XOR, and
EXACTLY, it nust be of type BOOLEAN; for UNION, D UNI ON, and
| NTERSECT, it nust be of sone relation type. Note: W include
this production rule in this section because in practice we expect
nost <agg op inv>s to denote scalar values. In fact, however, an
<agg op inv> will be a <scalar exp> a <tuple exp> (potentially),
or a <relation exp> depending on the type of the operator denoted
by <agg op nane>. (G ven the aggregate operators currently
defined, for UNNON, D UNION, and INTERSECT it is a <relation exp>,
otherwise it is a <scalar exp>.)

<agg op nane>
;1= COUNT | SUM| AVG| MAX| MN| AND| OR| XOR
| EXACTLY | UNFON | D_UNION | | NTERSECT

COUNT returns a result of type INTEGER, SUM AVG MAX, M N,
UNION, D UNION, and I NTERSECT return a result of the sane type as
the attribute denoted by the applicable <attribute ref>;’ AND, OR,
XOR, and EXACTLY return a result of type BOOLEAN. The <agg op
nane>s AND and OR can alternatively be spelled ALL and ANY,
respectively. Note: Tutorial D includes support for n-adic
versions of (a) AND, OR, XOR, and EXACTLY (see the section "Scal ar
Definitions," earlier) and (b) UNION, D UN ON, | NTERSECT, and JO N
(see the section "Relational Qperations,” later). It also includes
support for n-adic versions of COUNT, SUM AVG MAX, and MN;, for
example, SUM{1,2,5 2} is a valid <scalar exp> and it evaluates to
10.

<scal ar assi gn>
D= <scal ar target> : = <scal ar exp>
| <scal ar update>

<scal ar target>

"It m ght be preferable in practice to define AVG in such a way that, e.g.,
taki ng the average of a collection of integers returns a rational nunber. W do
not do so here nerely for reasons of sinplicity.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.14

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

= <scal ar var ref>
| <scalar THE_ pv ref>

The abbreviation pv stands for pseudovariable. Pseudovari abl es
are regarded as variables in Tutorial D, inplying anong ot her
things that a pseudovariabl e reference can appear wherever the
grammar requires a variable reference. Note: As nentioned in
Chapter 3, it would be possible, if desired, to include support for
ot her kinds of pseudovariables in addition to the THE_
pseudovari abl es nentioned in this granmar. |In particular, it would
be possible to support pseudovari ables patterned after Tutorial D s
existing attribute extractors.

<scal ar THE_ pv ref>
L= <THE_ pv nane> (<scal ar target>)

The <possrep conponent> corresponding to <THE_ pv nane> nust be
of sonme scal ar type.

<scal ar updat e>
L= UPDATE <scal ar target>
(<possrep conmponent assign comalist>)

Let the <scalar target>, ST say, be of type T. Every <possrep
conmponent assign>, PCA say, in the <possrep conponent assign
commal ist> is syntactically identical to an <assign> except that:

e The target of PCA nust be a <possrep conponent target>, PCT
say.

« PCT nust identify, directly or indirectly,® some G (i =1, 2,
., Nn), where C1, C2, ..., Cn are the conponents of sone
possrep PR for type T (the same possrep PR in every case).

 PCAis allowed to contain a <possrep conponent ref> PCR say,
wherever a <selector inv> would be all owed, where PCR is sone
G (i =1, 2, ..., n) and denotes the correspondi ng possrep
conponent val ue from ST.

Steps a. and b. of the definition given for nmultiple assignnent
under RM Prescription 21 in Chapter 4 are applied to the <possrep
conponent assign conmalist> The result of that application is a
<possrep conponent assign conmalist> in which each <possrep
conponent assign> is of the form

G = exp

® The phrase directly or indirectly appears several tines in this chapter in
contexts like this one. In terns of the present context, we can explain it as
follows: Again, let <possrep conponent assign> PCA specify <possrep conponent
target> PCT. Then PCA directly identifies G as its target if PCT is C; it
indirectly identifies C as its target if PCT takes the formof a <possrep THE_
pv ref> PTPR where the argunent at the innernpst |evel of nesting within PTPR
is C. The neaning of the phrase directly or indirectly in other simlar
contexts is anal ogous.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.15

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

for some G, and no two distinct <possrep conmponent assign>s
identify the same target C. Then the original <scalar update> is
equi val ent to the <scal ar assign>

ST := PR(X1, X2, ..., Xn)

(PR here is the selector operator corresponding to the possrep with
the sanme nane.) The argunents Xi are defined as foll ows:

« |If a <possrep conponent assign> PCA say, exists for G, then
let the <exp> fromPCA be X. For all j (j =1, 2, ..., n),
repl ace references in Xto G by (THE G (ST)). The version of
X that results is Xi

e Oherwise, Xi is THE C (ST).

<possrep component target>
.= <possrep conponent ref>
| <possrep THE_pv ref>

<possrep THE_ pv ref>
= <THE_ pv nanme> (<possrep conponent target>)

<scal ar conmp>
::= <scalar exp> <scal ar conp op> <scal ar exp>

Scal ar conparisons are a special case of the syntactic category
<bool exp>.

<scal ar conp op>
= =] <] <] > o2

The operators "=" and "+" apply to all scalar types; the
operators "<", "<, ">" and "2" apply to ordinal types only.

TUPLE OPERATI ONS

<tup|e nonwi t h exp>
D= <tuple var ref>
| <tuple op inv>
| (<tuple exp>)

<tuple op inv>
L= <user op inv>
| <built-in tuple op inv>

<bU|It-|n tuple op inv>
D= <tupl e selector inv>
| <THE_ op inv>
| <attribute extractor inv>
| <tuple extractor inv>
| <tuple project>
| <n-adic other built-in tuple op inv>
| <monadic or dyadic other built-in tuple op inv>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.16

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Al t hough we generally have little to say regardi ng operator
precedence, we find it convenient to give high precedence to tuple
projection in particular. An anal ogous remark applies to
rel ati onal projection also (see later).

<tupl e selector inv>
= TUPLE { <tuple conponent commalist> }

<t upl e conponent >
L= <attribute ref> <exp>

<tupl e extractor inv>
= TUPLE FROM <rel ati on exp>

The <rel ati on exp> nust denote a relation of cardinality one.

<tupl e project>
1:= <tuple exp>
{ [ALL BUT] <attribute ref commalist> }

The <tupl e exp> nmust not be a <nonadic or dyadic other built-in
tuple op inv>.

<n-adic other built-in tuple op inv>
= <n-adi ¢ tupl e union>

<n-adi ¢ tuple union>
L= UNION { <tuple exp commalist> }

The <tupl e exp>s nust be such that if the tuples denoted by any
two of those <tuple exp>s have any attributes in conmmon, then the
corresponding attribute values are the sane.

<nonadi ¢ or dyadic other built-in tuple op inv>
L= <nmonadi ¢ other built-in tuple op inv>
| <dyadic other built-in tuple op inv>

<nonadi ¢ other built-in tuple op inv>
= <tupl e renanme> | <tuple extend> | <tuple wap>
| <tuple unwap> | <tuple substitute>

<tupl e renane>
= <tupl e exp> RENAME (<renam ng commalist>)

The <tupl e exp> nmust not be a <nonadic or dyadic other built-in
tuple op inv> The individual <renam ng>s are executed in sequence
as witten.

<r enam ng>
L= <attribute ref> AS <introduced nanme>
| PREFI X <character string literal >
AS <character string literal >
| SUFFI X <character string literal >
AS <character string literal >

For the syntax of <character string literal>, see <built-in
scal ar type nane>. The <renam ng> PREFI X a AS b causes al

Copyright © 2005 C. J. Date and Hugh Darwen page 5.17

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

attributes of the applicable tuple or relati on whose nane begins
wth the characters of a to be renamed such that their nanme begins
with the characters of b instead. The <renam ng> SUFFIX a AS b is
defi ned anal ogously.

<tupl e extend>
D= EXTEND <t upl e exp> ADD (<extend add conmmalist>)

The <tupl e exp> nmust not be a <nonadic or dyadic other built-in
tuple op inv> The individual <extend add>s are executed in
sequence as witten.

<ext end add>
L= <exp> AS <introduced nanme>

Bot h <tupl e extend> and <extend> nake use of <extend add>. W
explain both cases here, but it is convenient to treat them
separately:

e In the <tuple extend> case, the <exp> is allowed to include an
<attribute ref> AR say, wherever a <selector inv> would be
allowed. |If the <attribute name> of AR is that of an attribute
of the tuple denoted by the <tuple exp> in that <tuple extend>,
then it denotes the corresponding attribute val ue; otherw se
the <tuple extend> nust be contained in some expression in
whi ch the nmeaning of AR is defined.

e In the <extend> case, the <exp> is again allowed to include an
<attribute ref> AR say, wherever a <selector inv> would be
allowed. Let r be the relation denoted by the <relation exp>
in that <extend>. The <exp> can be thought of as being
eval uated for each tuple of r in turn. |[If the <attribute nanme>
of ARis that of an attribute of r, then (for each such
eval uation) AR denotes the corresponding attribute val ue from
the correspondi ng tuple; otherw se the <extend> nust cont ai ned
in some expression in which the neaning of AR is defined.

<tupl e wap>
= <tupl e exp> WRAP (<wrappi ng comalist>)

The <tupl e exp> nmust not be a <nonadic or dyadic other built-in
tuple op inv> The individual <wapping>s are executed in sequence
as witten.

<wr appi ng>

o= { [ALL BUT] <attribute ref commalist> }
AS <introduced nane>

<tupl e unw ap>
D= <tupl e exp> UNWRAP (<unwr appi ng commal i st>)

The <tupl e exp> nmust not be a <nonadic or dyadic other built-in
tuple op inv> The individual <unw apping>s are executed in
sequence as witten.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.18

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<unwr appi ng>
D= <attribute ref>

The specified attribute nmust be of sonme tuple type.

<tupl e substitute>
L= UPDATE <tupl e exp> (<attribute assign conmalist>)

Syntactically, a <tuple substitute>is identical to a <tuple
updat e>, except that it contains a <tuple exp> in place of the
<tuple target> required in a <tuple update>. Let t be the tuple
denoted by the <tuple exp> and let Al, A2, ..., An be the
attributes of t. Every <attribute assign> AA say, in the
<attribute assign conmalist> is syntactically identical to an
<assi gn>, except that:

e The target of AA nust be an <attribute target>, AT say.

e AT nust identify, directly or indirectly, some Al (i =1, 2,
., n).
* AAis allowed to contain an <attribute ref> AR say, wherever a
<sel ector inv> would be allowed. |If the <attribute nane> of AR
is that of some Al (i =1, 2, ..., n), then AR denotes the

corresponding attribute value fromt; otherw se the <tuple
substitute> nmust be contained in sone expression in which the
nmeani ng of AR is defi ned.

Steps a. and b. of the definition given for nultiple assignnent
under RM Prescription 21 in Chapter 4 are applied to the <attribute
assign commalist> The result of that application is an <attribute
assign commalist> in which each <attribute assign>is of the form

Al = exp

for sone Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the expression

UPDATE t (Al := X, A :=Y)

where i # j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to dea
Wi th other cases are straightforward.) This expression is

equi valent to the foll ow ng:

((EXTENDt ADD (X AS Bi, YASBj)) { ALL BUT Ai, A })
RENAVE (Bi AS Bk, Bj AS Aj, Bk AS Ai)

Here Bi, Bj, and Bk are arbitrary distinct nanes that are different
fromall existing attribute nanmes in t.

<attribute target>
S = <attribute ref>
| <attribute THE_ pv ref>

<attribute THE_ pv ref>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.19

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<THE_ pv nanme> (<attribute target>)

<dyadi c other built-in tuple op inv>
L= <dyadi ¢ tuple union> | <tuple conpose>

<dyadi ¢ tupl e uni on>
L= <tupl e exp> UNION <tuple exp>

The <dyadic tuple union>r UNION s is equivalent to the <n-adic
tupl e union> UNION {r, s}.

<tupl e conpose>
L= <tupl e exp> COWPCSE <t upl e exp>

The <tupl e exp>s nust not be <nonadic or dyadic other built-in
tuple op inv>s. They nust be such that if the tuples they denote
have any attributes in common, then the corresponding attribute
val ues are the sane.

<tupl e assign>
= <tuple target> := <tuple exp>
| <tuple update>

<tupl e target>
= <tuple var ref>
| <tuple THE_pv ref>

<tuple THE_ pv ref>
L= <THE_ pv nanme> (<scal ar target>)

The <possrep conponent > corresponding to <THE_ pv nane> nust be
of sonme tuple type.

<t upl e updat e>
D= UPDATE <tupl e target>
(<attribute assign commalist>)

Let TT be the <tuple target>, and let Al, A2, ..., An be the
attributes of TT. Every <attribute assign> AA say, in the
<attribute assign conmalist> is syntactically identical to an
<assi gn>, except that:

e The target of AA nust be an <attribute target>, AT say.

e AT nust identify, directly or indirectly, some Al (i =1, 2,
., n).
* AAis allowed to contain an <attribute ref> AR say, wherever a
<sel ector inv> would be allowed. |If the <attribute nane> of AR
is that of some Al (i =1, 2, ..., n), then AR denotes the

corresponding attribute value fromTT; otherw se the <tuple
updat e> nust be contained in sonme expression in which the
nmeani ng of AR i s defi ned.

Steps a. and b. of the definition given for nmultiple assignnent
under RM Prescription 21 in Chapter 4 are applied to the <attribute

Copyright © 2005 C. J. Date and Hugh Darwen page 5. 20

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

assign commalist> The result of that application is an <attribute
assign commalist> in which each <attribute assign>is of the form

Al = exp

for sonme Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the <tuple update>

UPDATE TT (Al := X, A :=Y)

where i #j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to dea
with other cases are straightforward.) This <tuple update> is
equi valent to the follow ng <tuple assign>:

TT ;= UPDATE TT (Al := X, Al = Y)

(The expression on the right side here is a <tuple substitute>
i nvocation.)

<tupl e conp>
D= <tupl e exp> <tuple conp op> <tuple exp>
| <tuple exp> O <relation exp>
| <tuple exp> O <relation exp>

Tupl e conpari sons are a special case of the syntactic category
<bool exp>. The synbol "[" ("epsilon") denotes the set nenbership
operator; it can be pronounced "belongs to" or "is a nmenber of" or
just "[is] in." The expressiont Or is defined to be
semantically equivalent to the expression NOT(t O r).

<tupl e conp op>
= :|:/;

RELATI ONAL OPERATI ONS

<rel ati on nonwi th exp>
D= <rel ation var ref>
| <relation op inv>
| (<relation exp>)

<relation op inv>
L= <user op inv>
| <built-in relation op inv>

<built-in relation op inv>
D= <rel ati on sel ector inv>
| <THE_ op inv>
| <attribute extractor inv>
| <project>
| <n-adic other built-in relation op inv>
| <nonadic or dyadic other built-in relation op inv>

<rel ation selector inv>
L= RELATI ON [<heading>] { <tuple exp conmmalist> }

Copyright © 2005 C. J. Date and Hugh Darwen page 5.21

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

| TABLE_DEE
| TABLE_DUM

If the keyword RELATION is specified explicitly, (a) <headi ng>
nmust be specified if <tuple exp conmmalist> is enmpty; (b) every
<tuple exp> in <tuple exp conmalist> nust have the same headi ng;
(c) that heading nmust be exactly as defined by <heading> if
<headi ng> is specified. TABLE DEE and TABLE DUM are shorthand for
the <relation selector inv>s RELATION{}{TUPLE{}} and RELATI ON\{}{},
respectively (see RM Prescription 10 in Chapter 6 for further
expl anati on).

<proj ect >
D= <rel ati on exp>
{ [ALL BUT | <attribute ref commalist> }

The <rel ati on exp> nust not be a <npnadic or dyadi c ot her
built-in relation op inv>.

<n-adic other built-in relation op inv>
L= <n-adi ¢ union> | <n-adic disjoint union>
| <n-adic intersect> | <n-adic join>
<n-adi ¢ uni on>
- UNION [<heading>] { <relation exp conmalist> }

Here (a) <headi ng> nust be specified if <relation exp
commalist> is enpty; (b) every <relation exp>in <relation exp
commal i st> nust have the sanme heading; (c) that headi ng nust be
exactly as defined by <heading> if <heading> is specified. The
same remarks apply to <n-adic disjoint union> and <n-adic
i ntersect>, q.v.

<n-adi ¢ di sjoint union>
L= D UNTON [<heading>] { <relation exp commalist>}

The rel ations denoted by the <relation exp>s nust be pairw se
di sj oi nt .
<n-adi c intersect>
D= | NTERSECT [<heading>] { <relation exp conmmalist> }

If the <relation exp conmalist> is enpty, the <n-adic
i ntersect> evaluates to the "universal"” relation of the applicable
type: i.e., the unique relation of that type that contains al
possible tuples with the applicable <heading> In practice, the
i npl ementation mght want to outlaw, or at least flag, any
expression that requires such a value to be materiali zed.

<n-adi ¢ joi n>
= JON{ <relation exp commalist> }

<nmonadi ¢ or dyadic other built-in relation op inv>
L= <nmonadi ¢ other built-in relation op inv>
| <dyadic other built-in relation op inv>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.22

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<nonadi ¢ other built-in relation op inv>
::= <renane> | <where> | <extend> | <wrap> | <unw ap>
| <group> | <ungroup> | <substitute> | <tclose>

<r enane>
L= <rel ati on exp> RENAME (<renam ng conmalist>)

The <rel ati on exp> nust not be a <nmpnadic or dyadi c ot her
built-in relation op inv> The individual <renam ng>s are executed
I n sequence as witten.

<wher e>
= <rel ati on exp> WHERE <bool exp>

The <rel ati on exp> nust not be a <npnadic or dyadi c ot her
built-in relation op inv> Let r be the relation denoted by
<rel ation exp> The <bool exp>is allowed to contain an <attribute
ref> AR say, wherever a <selector inv> would be allowed. The
<bool exp> can be thought of as being evaluated for each tuple of r
inturn. If the <attribute name> of AR is that of an attribute of
r, then (for each such eval uati on) AR denotes the correspondi ng
attribute value fromthe correspondi ng tuple; otherw se the <where>
must be contained in sonme expression in which AR is defined. Note:
The <where> operator of Tutorial D includes the restrict operator
of relational algebra as a special case.

<ext end>
L= EXTEND <rel ati on exp>
ADD (<extend add commalist>)

The <rel ati on exp> nust not be a <npbnadic or dyadi c ot her
built-in relation op inv> The individual <extend add>s are
executed in sequence as witten.

<Wr ap>
= <rel ati on exp> WRAP (<w appi ng commalist>)

The <rel ati on exp> nust not be a <nonadic or dyadi c ot her
built-in relation op inv> The individual <w apping>s are executed
I n sequence as witten.

<unwr ap>
= <rel ati on exp> UNWRAP (<unw apping commalist>)

The <rel ati on exp> nust not be a <nonadic or dyadi c ot her
built-in relation op inv> The individual <unw apping>s are
executed in sequence as witten.

<gr oup>
L= <rel ati on exp> GROUP (<grouping commalist>)

The <rel ati on exp> nust not be a <npnadic or dyadi c ot her
built-in relation op inv> The individual <grouping>s are executed
i n sequence as witten.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.23

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<gr oupi ng>
o= { [ALL BUT] <attribute ref commalist> }
AS <introduced nane>

<ungr oup>
L= <rel ation exp> UNGROUP (<ungrouping conmmalist>)

The <rel ati on exp> nust not be a <npnadic or dyadi c ot her
built-in relation op inv> The individual <ungrouping>s are
executed in sequence as witten.

<ungr oupi ng>
L= <attribute ref>

The specified attribute nmust be of sone relation type.

<substitute>
= UPDATE <rel ati on exp>
(<attribute assign commalist>)

Syntactically, a <substitute> is identical to a <relation
updat e>, except that it contains a <relation exp> in place of the
<relation target> (and optional WHERE <bool exp>) required in a
<relation update>. Let r be the relation denoted by the <relation
exp>, and let A1, A2, ..., An be the attributes of r. Every
<attribute assign> AA say, in the <attribute assign comalist> is
syntactically identical to an <assign>, except that:

* The target of AA nust be an <attribute target>, AT say.

e AT nust identify, directly or indirectly, some Al (i =1, 2,
., n).

* AAis allowed to contain an <attribute ref> AR say, wherever a
<sel ector inv> would be allowed. AA can be thought of as being
applied to each tuple of r in turn. |If the <attribute nane> of
AR is that of some Al (i =1, 2, ..., n), then (for each such
appl i cation) AR denotes the corresponding attribute value from
the correspondi ng tuple; otherw se the <substitute> nust be
contained in sonme expression in which the neaning of ARIis
defi ned.

Steps a. and b. of the definition given for nmultiple assignnent
under RM Prescription 21 in Chapter 4 are applied to the <attribute
assign commalist> The result of that application is an <attribute
assign commalist> in which each <attribute assign>is of the form

Al = exp
for sone Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the expression

UPDATE r (Al := X, A :=Y)

where i # j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to dea

Copyright © 2005 C. J. Date and Hugh Darwen page 5. 24

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Wi th other cases are straightforward.) This expression is
equi valent to the foll ow ng:

((EXTENDr ADD (X ASBi, YASBj)) { ALL BUT Ai, A })
RENAVE (Bi AS Bk, Bj AS Aj, Bk AS Ai)

Here Bi, Bj, and Bk are arbitrary distinct nanmes that are different
fromall existing attribute names in r.

<t cl ose>
L= TCLOSE <rel ation exp>

The <rel ation exp> nust not be a <npbnadic or dyadi c ot her
built-in relation op inv> Furthernore, it nust denote a relation
of degree two, and the attributes of that relation nmust both be of
t he sane type.

<dyadi c other built-in relation op inv>
L= <dyadi ¢ uni on> | <dyadic disjoint union>
| <dyadic intersect> | <m nus> | <dyadic join>
| <conmpose> | <semjoin> | <sem m nus>
| <divide> | <summarize>
<dyadi ¢ uni on>
L= <rel ation exp> UNION <rel ati on exp>
The <rel ati on exp>s nust not be <nonadic or dyadic other built-

in relation op inv>s, except that either or both can be anot her
<dyadi ¢ uni on>.

<dyadi ¢ di sjoi nt union>
D= <rel ation exp> D _UNION <rel ati on exp>

The <rel ati on exp>s nmust not be <nonadic or dyadic other built-
in relation op inv>s, except that either or both can be another
<dyadi ¢ disjoint union> The relations denoted by the <relation
exp>s mnmust be disjoint.

<dyadi c i ntersect>
L= <rel ati on exp> | NTERSECT <rel ati on exp>

The <rel ati on exp>s nust not be <nopnadic or dyadic other built-
in relation op inv>s, except that either or both can be anot her
<dyadi c i ntersect>.

<m nus>
L= <rel ation exp> MNUS <rel ati on exp>

The <rel ati on exp>s nmust not be <nonadi c or dyadic other built-
in relation op inv>s.
<dyadi ¢ j 0i n>
= <rel ation exp> JON <rel ati on exp>
The <rel ati on exp>s nmust not be <nopnadic or dyadic other built-

in relation op inv>s, except that either or both can be anot her
<dyadi ¢ j oi n>.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.25

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<conpose>
L= <rel ati on exp> COWOCSE <rel ati on exp>

The <rel ation exp>s nust not be <nonadic or dyadic other built-
inrelation op inv>s.
<sem j oi n>
= <rel ation exp> SEMJAO N <rel ati on exp>
The <rel ati on exp>s nust not be <nopnadic or dyadic other built-

inrelation op inv>s. The keyword SEMJO N can alternatively be
spel | ed MATCHI NG

<sem m nus>
= <rel ati on exp> SEM M NUS <rel ati on exp>

The <rel ati on exp>s nust not be <nopnadic or dyadic other built-
in relation op inv>s. The keyword SEM M NUS can alternatively be
spel | ed NOT MATCHI NG

<di vi de>
D= <rel ati on exp> DI VI DEBY <rel ation exp> <per>

The <rel ati on exp>s nmust not be <nonadic or dyadic other built-
in relation op inv>s.

<per >
S PER (<relation exp> [, <relation exp>1])

Ref erence [34] defines two distinct "divide" operators that it
calls the Small Divide and the Great Divide, respectively. 1In
Tutorial D, a <divide> in which the <per> contains just one
<relation exp>is a Small D vide, a <divide> in which it contains
two is a Geat Divide. See RMPrescription 18 in Chapter 6 for
further explanation.

<summarize>
L= SUMVARI ZE <rel ation exp> [<per or by>]
ADD (<summarize add conmalist>)

The <rel ati on exp> nust not be a <npnadic or dyadi c ot her
built-in relation op inv> Omtting <per or by> is equivalent to
speci fying PER (TABLE DEE). The individual <sumarize add>s are
executed in sequence as witten.

<per or by>

ci= <per>
| BY { [ALL BUT | <attribute ref commalist> }
Let r be the relation to be summarized. |[|f <per> is specified,

it nmust contain exactly one <relation exp> Let pr be the relation
denoted by that <relation exp> Then every attribute of pr nust be
an attribute of r. Specifying BY {Al,A2,...,An} is equivalent to
speci fying PER (r{Al, A2,...,An}).

<summari ze add>
L= <summar y> AS <i ntroduced nanme>

Copyright © 2005 C. J. Date and Hugh Darwen page 5. 26

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<sunmmary>
- = <summary spec> ([<integer exp>,]
[<scalar exp>])

Let r and pr be as defined under the production rule for <per
or by>. Then:

e The <integer exp> and follow ng comma nust be specified if and
only if the <summary spec> i s EXACTLY or EXACTLYD. The
<integer exp>is allowed to include an <attribute ref> [|AR
say, Wwherever a <selector inv> wuld be allowed. |If the
<attribute name> of 1AR is that of an attribute of pr, then | AR
denotes the corresponding attribute value fromsone tuple of
pr; otherwi se the <summary> nust be contained in sone
expression in which I AR is defined.

* The <scal ar exp> nust be specified if and only if the <summary
spec> is not COUNT. The <scalar exp>is allowed to include an
<attribute ref> SAR say, wherever a <selector inv> would be
allowed. If the <attribute nane> of SAR is that of an
attribute of r, then SAR denotes the corresponding attribute
value fromsone tuple of r; otherwi se the <summary> nust be
contained in sonme expression in which SAR is defined.

For SUM SUMD, AVG and AVGD, the val ue denoted by <scal ar exp>
nmust be of sone type for which the operator "+" is defined; for MAX
and MN, it nust be of sone ordinal type; for AND, OR, XOR,

EXACTLY, and EXACTLYD, it nust be of type BOCOLEAN; for UN ON,

D UNION, and I NTERSECT, it nust be of sone relation type. Cbserve
that <summary> and <agg op inv> are not the same thing, although
the type of any given <summary> is the sane as that of its <agg op
i nv> counterpart.

<sunmary spec>
;= COUNT | COUNTD | SUM| SUMD | AVG| AVGD | MAX | MN
| AND| OR| XOR | EXACTLY | EXACTLYD
| UNON| D UNION | | NTERSECT

The suffix "D'" ("distinct") in COUNTD, SUMD, AVGD, and EXACTLYD
means "elim nate redundant duplicate val ues before perform ng the
summari zation.” COUNT and COUNTD return a result of type I NTEGER
SUM SUMD, AVG AVGED, MAX, M N, UNTON, D UNION, and | NTERSECT
return a result of the same type as the value denoted by the
appl i cabl e <scal ar exp>;° AND, OR, XOR, EXACTLY, and EXACTLYD
return a result of type BOOLEAN. The <summary spec>s AND and OR
can alternatively be spelled ALL and ANY, respectively.

°1t m ght be preferable in practice to define the <summary spec>s AVG and AVGD
in such a way that, e.g., taking the average of a collection of integers returns
a rational nunber. W do not do so here nerely for reasons of sinplicity.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.27

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<rel ati on assi gn>
L= <relation target> := <rel ati on exp>
| <relation insert>
| <relation del ete>
| <relation update>

<rel ation target>
D= <relation var ref>
| <relation THE_ pv ref>

<relation THE_ pv ref>
L= <THE_ pv nane> (<scal ar target>)

The <possrep conponent> corresponding to <THE_ pv nanme> nust be
of sonme relation type. Note: Let rx be the <relation exp>
appearing in the <virtual relation var def> that defines sone
virtual relvar V. Then it would be possible, assunming Vis
updat abl e (see Appendix E), to allowrx to serve as a relation
pseudovari abl e al so. However, this possibility is not reflected in
the grammar defined in this chapter

<rel ation insert>
L= | NSERT <relation target> <rel ati on exp>

<rel ati on del ete>
D= DELETE <rel ation target> [WHERE <bool exp>]

Let the <relation target> be RT. The <bool exp> is allowed to
contain an <attribute ref> AR say, wherever a <selector inv> would
be all owed. The <bool exp> can be thought of as being eval uated
for each tuple of RT in turn. |If the <attribute name> of AR is
that of an attribute of RT, then (for each such eval uation) AR
denotes the corresponding attribute value fromthe correspondi ng
tupl e; otherwi se the <relation del ete> nust be contained in sone
expression in which the neaning of AR is defined.

<rel ati on update>
L= UPDATE <rel ation target> [WHERE <bool exp>]
(<attribute assign conmalist>)

Let RT be the <relation target> and let Al, A2, ..., An be the
attributes of RT. The <bool exp>is allowed to contain an
<attribute ref> AR say, wherever a <selector inv> would be
al l owed. The <bool exp> can be thought of as being eval uated for
each tuple of RT in turn. |If the <attribute name> of AR is that of
some Ai (i =1, 2, ..., n), then (for each such evaluation) AR
denotes the corresponding attribute value fromthe corresponding
tupl e; otherw se the <relation update> nust be contained in sone
expression in which the neaning of ARis defined. Every <attribute
assign> AA say, in the <attribute assign commalist> is
syntactically identical to an <assign>, except that:

* The target of AA nust be an <attribute target>, AT say.

Copyright © 2005 C. J. Date and Hugh Darwen page 5.28

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

e AT nust identify, directly or indirectly, some Al (i =1, 2,
., n).

* AMAis allowed to contain an <attribute ref> AR say, wherever a

<sel ector inv> would be allowed. AA can be thought of as being
applied to each tuple of r in turn. |If the <attribute nanme> of
AR is that of sonme Al (i =1, 2, ..., n), then (for each such
application) AR denotes the corresponding attri bute value from
the corresponding tuple; otherwi se the <relation update> nust
be contained in sone expression in which the neaning of ARIis
def i ned.

Steps a. and b. of the definition given for nultiple assignnent
under RM Prescription 21 in Chapter 4 are applied to the <attribute
assign commualist> The result of that application is an <attribute
assign commalist> in which each <attribute assign>is of the form

Al = exp

for sone Ai, and no two distinct <attribute assign>s identify the
same target Ai. Now consider the <relation update>

UPDATE RT WHERE b (Al := X, A :=Y)

where i # j. (For definiteness, we consider the case where there
are exactly two <attribute assign>s; the revisions needed to dea
with other cases are straightforward.) This <relation update> is
equi valent to the follow ng <relation assign>:

RT := (RT WHERE NOT (b))
UNI ON
(UPDATE RT WHERE b (Al := X, A :=Y))

The third Iine here consists of a <substitute> invocation in
par ent heses.

<rel ati on conp>
= <rel ati on exp> <relation conp op> <relation exp>

Rel ati on conpari sons are a special case of the syntactic
category <bool exp>.

<rel ation conp op>
= =l =]l |] o 2

Note: The synbols "<" and "c" denote "subset of" and "proper
subset of," respectively; the synbols "2" and ">" denote "superset
of " and "proper superset of," respectively.

RELATI ONS AND ARRAYS

The Third Manifesto prohibits tuple-at-a-tinme retrieval froma
relati on as supported by, e.g., FETCH via a cursor in SQ.. But

Copyright © 2005 C. J. Date and Hugh Darwen page 5.29

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Tutorial D does allow a relation to be mapped to a one-di nensi ona
array (of tuples), so an effect sonewhat anal ogous to such tuple-
at-a-tinme retrieval can be obtained, if desired, by first
perform ng such a mapping and then iterating over the resulting
array.® But we deliberately adopt a very conservative approach to
this part of the |anguage. A fully orthogonal |anguage woul d
support arrays as "first-class citizens"—inplying support for a
general ARRAY type generator, and arrays of any nunber of

di mensi ons, and array expressions, and array assignnent, and array
conpari sons, and so on. However, to include such extensive support
in Tutorial D would conplicate the | anguage unduly and m ght well
obscure nore inportant points. For sinplicity, therefore, we

i nclude only as nuch array support here as seens absolutely
necessary; noreover, nost of what we do include is deliberately
speci al -cased. Note in particular that we do not define a
syntactic category called <array type>.

<array var def>
= VAR <array var nane> ARRAY <tuple type>

Let A be a Tutorial D array variable; then the value of A at
any given time is a one-di nensional array containing zero or nore
tuples all of the same type. |If it contains at |east one, the
| ower bound is one, otherwise it and the upper bound are both zero.
Let the values of A at tines tl1 and t2 be al and a2, respectively.
Then al and a2 need not necessarily contain the sane nunber of
tuples, and A s upper bound thus varies with tine. Note that the
only way A can acquire a new value is by nmeans of a <relation get>
(see below); in practice, of course, additional nmechanisnms wll be
desirabl e, but we do not specify any such nechani snms here.

<rel ati on get>
L= LOAD <array target> FROM <rel ati on exp>
ORDER (<order item comualist>)

<array target>
= <array var ref>

<array var ref>
::= <array var nane>

Poi nts ari sing:

e Tuples fromthe relation denoted by <relation exp> are | oaded
into the array variabl e designated by <array target> in the
order defined by the ORDER specification. |If <order item
commalist>is enpty, tuples are | oaded in an inplenentation-
defined order.

|'n accordance with RM Proscri ption 7, Tutorial D supports nothing at all
anal ogous to SQ.'s tuple-at-a-tine update operators (i.e., UPDATE or DELETE
"WHERE CURRENT OF cursor").

Copyright © 2005 C. J. Date and Hugh Darwen page 5. 30

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

» The headi ngs associated with <array target> and <rel ati on exp>
woul d normal ly have to be the sanme. But it would be possible,
and perhaps desirable, to allow the former to be a proper
subset of the latter. Such a feature could allow the sequence
in which tuples were | oaded into the array variable to be
defined in terns of attributes whose val ues were not thensel ves
to be retrieved—thereby allowi ng, e.g., retrieval of enployee
nunbers and nanes in salary order without at the sane tine
actually retrieving those sal ari es.

» LOAD is really assignnent, of a kind (in particular, it has the
ef fect of replacing whatever value the target previously had).
However, we deliberately do not use assignment syntax for it
because it effectively involves an inplicit type conversion
(i.e., a coercion) between a relation and an array. W have
al ready given our reasons in Chapter 3 for not wishing to
support coercions; in the case at hand, therefore, we prefer to
define a new operation (LOAD), with operands that are
explicitly defined to be of different types, instead of relying
on conventional assignnent plus coercion.

<order itenp
N <direction> <attribute ref>

A useful extension in practice mght be to allow <scal ar exp>
in place of <attribute ref> here.

<direction>
::= ASC | DESC
<rel ation set>
= LOAD <rel ation target> FROM <array var ref>

The array identified by <array var ref> nust not include any
duplicate tuples.

We al so need a new kind of <tuple exp> and an <array
cardinality> operator (a special case of <integer exp>):

<tupl e exp>
L= ... all previous possibilities, together wth:
| <array var ref> (<subscript>)

<subscri pt>
= <i nt eger exp>

<array cardinality>
L= COUNT (<array var ref>)
STATEMENTS

<st at enent >
L= <statement body> ;

Copyright © 2005 C. J. Date and Hugh Darwen page 5.31

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

<statenEnt body>
D= <previously defined statenment body>
| <begin transaction> | <commt> | <roll back>
| <call> | <return> | <case> | <if>| <do> | <while>
| <leave> | <no op> | <conpound statenent body>

<preV|oust defined statenent body>
:= <assignnent >
| <user op def> | <user op drop>
| <user scalar type def> | <user scalar type drop>
| <scalar var def> | <tuple var def>
| <relation var def> | <relation var drop>
| <constraint def> | <constraint drop>
| <array var def> | <relation get> | <relation set>

<beg|n transacti on>
S BEG N TRANSACTI ON

BEGA N TRANSACTI ON can be issued when a transaction is in
progress. The effect is to suspend execution of the current
transaction and to begin a new ("child") transaction (see OO
Prescription 5 in Chapter 8 for further explanation). COW T or
ROLLBACK term nates execution of the transaction nost recently
begun, thereby reinstating as current—and conti nui ng execution
of —t he suspended "parent"” transaction, if any. Note: An
i ndustrial strength D mi ght usefully all ow BEG N TRANSACTI ON t o
assign a nane to the transaction in question and then require
COWM T and ROLLBACK to reference that nane explicitly. However, we
choose not to specify any such facilities here.

<comm t>

= COW T
<rol | back>

N ROLLBACK
<cal | >

L= CALL <user op inv>

The user-defined operator being invoked nust be an update
operator specifically. Argunents corresponding to paraneters that
are subject to update nust be specified as <scal ar target>s, <tuple
target>s, or <relation target>s, as applicable.

<r et urn>
::= RETURN [<exp>]

The <exp> is required for a read-only operator and prohibited
for an update operator. Note: An update operator need not contain

a <return> at all, in which case an inplicit <return> is executed
when t he END OPERATCR i s reached.
<case>
L= CASE ;

<when def list>

Copyright © 2005 C. J. Date and Hugh Darwen page 5.32

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

[ELSE <statenent>]

END CASE
<when def >
::= WHEN <bool exp> THEN <st at enent >
<if>
L= | F <bool exp> THEN <st at enent >
[ELSE <st at enment > |
END | F
<do>
L= [<statenent nane> : |
DO <scal ar var ref> : =
<i nteger exp> TO <i nteger exp> ;
<st at enent >
END DO
<whi | e>
L= [<statenent nane> : |
VWHI LE <bool exp> ;
<st at ement >
END WHI LE
<| eave>

= LEAVE <st at enent nane>

A variant of <leave> that nerely term nates the current
iteration of the | oop and begins the next mght be useful in
practi ce.

<no op>
L= ... an enpty string
<conpound st at enment body>
L= BEG N ; <statenent |ist> END

One final point to close this section: Elsewhere in this book,
we often make use of "end of statenent," "statenent boundary,” and
simlar expressions to refer to the time when integrity checking is

done, anobng other things. |In such contexts, "statement” is to be
understood, in Tutorial D terns, to nean a <statenent> that
contai ns no other <statenent>s nested inside itself; i.e., it is

not a <case>, <if>, <do> <while> or conpound statenent.
RECENT LANGUAGE CHANGES

There are a nunber of differences between Tutorial D as described
in the present chapter and the version of the |anguage defined in
this book's predecessor (reference [83]). For the benefit of
readers who might be famliar with that earlier version, we
sunmarize the main differences here.

e The previous version allowed certain braces or parentheses to
be omtted if what was contained within those braces or

Copyright © 2005 C. J. Date and Hugh Darwen page 5.33

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

par ent heses consi sted of just one item (or sonetinmes no item at
all). The present version does not.

e In many places the previous version required sone |list or
commal i st to be nonenpty where the present version does not.

* The previous version all owed possrep conponent nanes to be
omtted, but the present version does not.

e The ability has been added (a) to define a tuple variable to
have the same heading as a specified relation expression and
(a) to define a relvar to have the sane heading as a specified
tupl e expression

e Support for the bool ean operators XOR and EXACTLY has been
added. For AND, OR, and XOR, both infix (dyadic) and prefix
(n-adic) syntax are supported (of course, EXACTLY is
intrinsically n-adic).

* Odinal types are now explicitly declared as such

* Update operators are no longer regarded as (or limted to
bei ng) scalar; thus, scalar, tuple, and relation paraneters can
all be subject to update and identified as such in the UPDATES
specification. Update operators, but not read-only operators,
can also directly update variables that are not local to the
operator in question.

e The commalist of <assign>s in UPDATE (various forns) is now
encl osed in parentheses instead of braces.

* BASE has been introduced as an alternative spelling for REAL.

* The keywords LOCAL and GLOBAL on <application relation var
def >s have been replaced by PRI VATE and PUBLIC, respectively.

* An INT specification is now supported for REAL (or BASE) and
PRI VATE rel vars.

* INT specifications can now be used to determ ne the type of
the vari abl e bei ng decl ared.

* The initializing expression in INIT is now enclosed in
parent heses, as is the defining expression in a virtual relvar
definition.

* A new form of <scal ar assign> has been added, using the keyword
UPDATE.

* For syntactic reasons, tuple join has been replaced by tuple
union (semantically, of course, the operators are equivalent).

e Support for disjoint union (D_UNION) has been added.

e Prefix (n-adic) versions of union (including tuple union),
di sjoint union, intersect, and join are now support ed.

Copyright © 2005 C. J. Date and Hugh Darwen page 5. 34

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

« NMATCH NG and NOT MATCHI NG have been i ntroduced as alternative
spellings for SEMJO N and SEM M NUS, respectively.

e The operators <substitute>, <tuple substitute> and <tuple
conpose> have been introduced.

« A BY formof SUWARI ZE has been added.

e AND and OR have been introduced as preferred spellings for ALL
and ANY, respectively. COUNT is now witten COUNT ().
Aggregat e operators XOR, EXACTLY, UNION, D UNI ON, and | NTERSECT
have been introduced. All of the aggregate operators have both
(a) n-adic forns and (b) "summary" anal ogs in SUMVARI ZE. Al so,
the aggregate operators COUNT, SUM AVG and EXACTLY have
addi ti onal "sunmary" anal ogs COUNTD, SUMD, AVGED, and EXACTLYD
for which redundant duplicate values are elimnated before the
sunmari zation i s done.

e The IN operator is now witten [.

e GROUP and UNGROUP now support "nultiple"™ grouping and
ungr oupi ng.

« The syntax of the ordering specification on <relation get> has
changed.

* The <with> statenent has been dropped and W TH expressi ons have
been clarified.

e« A nunber of mnor corrections have been nmade.

In addition to all of the foregoing, many syntactic category
nanes and production rul es have been revised (in sone cases
extensively). However, those revisions in thenselves are not
i ntended to i nduce any changes in the |anguage bei ng defined.

A REMARK ON SYNTAX

You mi ght have noticed that the syntax of operator invocations in
Tutorial Dis not very consistent. To be specific:

e User-defined operators use a prefix style, with positional
ar gunent/ par anet er mat chi ng.

e Built-in operators, by contrast, sonetines use an infix style
"+ "=", MNUS, etc.), sonetines a prefix style (MAX,
EXACTLY, n-adic JON, etc.).

e Sone of those built-in operators rely on positiona
argunent/ paranmeter matching ("+", MNUS, MAX, EXACTLY, etc.),
while others do not'! ("=", n-adic JON, etc.). Al so, those
that rely on positional matching use parentheses to encl ose
their argunents, while those that do not use braces.

“or, at least, the order in which the argunments are specified in such cases is
i muaterial .

Copyright © 2005 C. J. Date and Hugh Darwen page 5.35

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

e Sone operators seemto use a mixture of prefix and infix styles
(SUMVARI ZE, DI VI DEBY, etc.), or even a wholly private style of
their own (project, THE operators, CASE, CAST, etc.).

 Finally, it could be argued that reliance on ordinal position
for argunent/paraneter matching violates the spirit, if not the
letter, of RMProscription 1 (which prohibits the use of
ordinal position to distinguish the attributes of a
rel ati on)—especially in the case of scalar selectors, where
t he sequence of defining paraneters (in the corresponding
possrep definition) should not matter but does.

G ven all of the above, the possibility of adopting a nore
uniformstyle seenms worth exploring. Now, we deliberately did no
such thing in earlier sections of this chapter because we did not
want Tutorial D to | ook even nore outlandish than it m ght do
al ready. Now, however, we can at |east offer sone thoughts on the
subj ect. The obvi ous approach would be to do both of the
fol | ow ng:

e Permt (if not mandate) a prefix style for everything

e Perform argunent/paraneter matchi ng on the basis of nanes
i nstead of position

In the case of scalar selectors, for exanple, we m ght propose
CARTESIAN { Y 2.5, X 5.0}

as a possible replacenent for
CARTESIAN (5.0, 2.5)

(note in particular that the parentheses have been repl aced by
braces). In other words, the suggestion is that a general <op inv>
("operator invocation") should take the form

<op nane> { <argunent spec conmalist> }

where <op nanme> identifies the operator in question and <argunent
spec> takes the form

<par anet er name> <exp>

There are sone difficulties, however. For one thing, this new
prefix style seens clunsier than the old in the comon special case
in which the operator takes just one paraneter, as with (e.g.) SIN,
COS, and sonetinmes COUNT. For another, sone commobn operators
(e.g., "+", "=", ":=") have nanmes that do not abide by the usua
rules for formng identifiers. For a third, built-in operators, at
| east as currently defined, have no user-known paraneter nanes.
Now, we could perhaps fix this |ast problemby introducing a
convention according to which those nanes are sinply defined to be
P1, P2, P3, etc., thus naking (e.g.) expressions |like this one
val i d:

JON{ PL r1, P2r2, P3r3, ... , P49 r49 }

Copyright © 2005 C. J. Date and Hugh Darwen page 5. 36

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

Agai n, however, the new syntax in this particul ar case seens
clunsier than the old, since JON is associative and the order in
whi ch the argunments are specified makes no difference.

Anot her difficulty arises in connection with exanples like this
one:

MNUS{ PLrl, P2r2}

Here it becones inportant to know which is the Pl paraneter and
which the P2 (r1 MNUS r2 and r2 MNUS rl1 are not equivalent, in
general). Sone additional apparatus would be required to
conmuni cate such information to the user

EXERCI SES

1. Wite a set of Tutorial D data definitions for the suppliers-
and- parts database (relvar definitions only; Exercise 14 in
Chapter 3 already asked for the type definitions).

2. Define virtual relvars for (a) suppliers with status greater
than ten; (b) shipnments of red parts; (c) parts not avail able
from any London supplier.

3. Distinguish between database and application relvars.
4. |1s the bool ean operator XOR associative?

5. Consider the prefix (n-adic) versions of AND, OR and XOR
What happens if the specified <bool exp conmalist> contains
just one <bool exp>? What if it contains none at all?

6. The expression XOR {<bool exp commalist>} is defined to
evaluate to TRUE if and only if an odd nunmber of the specified
<bool exp>s evaluate to TRUE. Justify this definition.

7. VWhat does the expression EXACTLY (0, {<bool exp commali st>})
return? Wat if the <bool exp conmalist> is enpty?

8. Gve Tutorial D formulations for the foll owi ng updates to the
suppl i ers-and-parts dat abase:

a. Insert a new shipnent with supplier nunber S1, part nunber
P1, quantity 500.

b. Insert a new supplier S10 (nanme and city Smith and New YorKk,
respectively; status not yet known).

c. Delete all blue parts.
d. Delete all parts for which there are no shipnments.
e. Change the color of all red parts to orange.
f. Replace all appearances of supplier nunber S1 by appearances
of supplier nunber S9 instead.
Copyright © 2005 C. J. Date and Hugh Darwen page 5. 37

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

In each case, give two fornul ations, one using | NSERT, DELETE,
or UPDATE (as applicable) and one using a pure relationa
assi gnnent .

9. The Tutorial D grammar presented in this chapter involves
nunerous lists and commalists. |In every case, what happens if
the list or commalist is enpty?

10. The LOAD statenent involves an ORDER specification. Considered
as an operator in its own right, however, ORDER is rather
unusual . In what respects?

11. Consider the follow ng type definition:
TYPE ELLI PSE POSSREP { A RATI ONAL, B RATI ONAL, CTR PO NT
CONSTRAINT A =2 B } ;

(This is a sinplified version of an exanple we will be using
extensively in later chapters.) Now let E be a variable of
type ELLIPSE, and consider the followi ng two statenents:

a. THEA(E) :=7.0, THEB(E) := 5.0 ;
b. UPDATEE (A:= 7.0, B:=5.0) ;

Is there any | ogical difference between these statenments? |If
so, what is it?

12. Data definition operations (for objects in the database, at
| east) cause updates to be nmade to the catal og. But the
catalog is only a collection of relvars, just like the rest of
the dat abase; so could we not just use the famliar update
operations | NSERT, DELETE, and UPDATE to update the catal og
appropriately? Discuss.

13. Design an extension to the syntax of the Tutorial D SUMVARI ZE
operator that would nmake, e.g., an expression of the form

(MX(X) - MN(Y)) I 2
a valid <summary>
14. Suppose we are given the follow ng definitions:

TYPE PO NT POSSREP { X RATI ONAL, Y RATIONAL } ;
TYPE Cl RCLE POSSREP { R RATI ONAL, CTR PO NT } ;
TYPE COLORED_CI RCLE POSSREP { CIR CI RCLE, COL COLCR } ;

VAR CC COLORED_CI RCLE ;

The following is a valid assignnment statenment with variable CC
as target:

UPDATE CC (UPDATE CIR (UPDATECTR (X := 2 * X))) ;

Show a conpl etely expanded version of this statenent that makes
no use of the UPDATE short hand.

Copyright © 2005 C. J. Date and Hugh Darwen page 5. 38

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

*** End of Chapter 5 ***

Copyright © 2005 C. J. Date and Hugh Darwen page 5.39

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 93-125,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.

