Search Member List 葍 Calendar（8）Help
Search Member List 葍 Calendar（8）Help

Current time：02－19－2010，02：14 PM

Hello There，Guest！（Login－Register）

OMath！／Math Forums 数学讨论／Number Theory／Chinese Remainder Theory

Thread Rating：

Chinese Remainder Theory

Threaded Mode I Linear Mode
02－17－2010，03：09 PM（This post was last modified：Yesterday 12：51 AM by elim．）
elim B
Junior Member

Chinese Remainder Theory

The theorem statement：$\left(\left(n_{i}, n_{j}\right)=1, \quad 1<=J<J<=K\right) \Rightarrow$

$$
\begin{aligned}
& \forall\left(a_{1}, \cdots, a_{k}\right) \in \mathbf{v}_{U}^{k} \quad \exists x 0 \in \mathbf{N}_{0}{ }^{\prime} X_{0} \equiv a_{i}\left(\bmod n_{i}\right) \quad i=1, K_{\Lambda} \\
& { }^{`}\left(x \equiv a_{i}\left(\bmod n_{i}\right) \quad i=1, \sharp \bar{Y} \Leftrightarrow\left(x \equiv x 0\left(\bmod n_{1} \cdots n_{k}\right)\right)\right.
\end{aligned}
$$

Proof．Let $N={ }^{\wedge \times} \underset{1=1}{\kappa} n_{i \text { then }}\left(n_{i}, N / n_{i}\right)=1_{\text {hence }}$
$\exists s_{i}, t_{i} \in \mathbf{Z}: \quad s_{i} n_{i}+t_{i}\left(N / n_{i}\right)=1 \quad i=1, K$
Let $e_{i}=t_{i}\left(N / n_{i}\right)$ ，then $\left(e_{i} \equiv U\left(\bmod n_{j}\right) \quad 1 \neq j\right) \wedge\left(e_{i} \equiv 1\left(\bmod n_{i}\right)\right)$
So $x 0=-{ }_{1=1}^{K} d_{i} e_{i}$ satisfies $x 0 \equiv a_{i}\left(\bmod n_{i}\right) \quad i=1, K$
Now
${ }^{\prime} \equiv a_{i}\left(\bmod n_{i}\right) \quad i=1, \kappa^{\prime} \Leftrightarrow ` x-x 0 \equiv 0\left(\bmod n_{i}\right), \quad i=1, \dot{K} \Leftrightarrow(x \equiv x 0(\bmod N))$
Q．E．D
As an example，we look at HanXing＇s Soldier Counting（韩信点兵）

七子团圆正半月，除百零五便得知。
The Chinese above is a mystery poem－code of（ ${ }^{* *}$ ）below：

$$
\begin{aligned}
& \text { Where }\left\lfloor X^{\lrcorner_{j}}=\min \left\{m \in{ }^{\mathbf{v}_{0}}: J \mid(x-m)_{i \&} \text { the remainder of } x \text { by } j\right. \text {. }\right.
\end{aligned}
$$

The poem，in English sounds roughly like this to me：
Rarely you see 3 men walking together all above $\mathbf{7 0}$＇s， But 5 and 21 surely show the beauty of plum blossoms， 7 sons＇reunion expects full moon at middle month sky， with these to a multiple of 105 you figure it out all！

Note：In Chinese lunar calendar，full moon always appears at the middle of the month．which implies number 15.

Let＇s say someone chose a number in mind with remainders of 3，5 and 7 respectively as：
 some $n \in \boldsymbol{Z}$
 some $n \in \boldsymbol{Z}$
 some $n \in \mathbb{L}$ ．

If we know the number＇s range is $\left\lfloor\boldsymbol{k}, \boldsymbol{k}+1 \cup \mathrm{~b}_{\mathrm{fbr}}\right.$ some $K \in \boldsymbol{\Sigma}$ ，we then get the definite answer． So if you ask people choose a number from $[1,1 \cup$ Uahd let them to provide the remainders with respect to 3,5 and 7，you know exactly what in their mind．This is quite amazing for most people．

But in US，figure out remainders is already too hard for most people．．．That＇s why we are good at complicated measure systems：Let computer figure things out．

．FIND		
«Next Oldest I Next Newest»	Enter Keywords	Search Thread

new reply

View a Printable Version	Forum Jump：-- Number Theory	Go
Send this Thread to a Friend		

Subscribe to this thread

Powered By MyBB，© 2002－2010 MyBB Group．

