MyBB=	
🔍 Search 🍰 Membe	er List 토 Calendar 🔞 Help
Hello There, Guest! (Login – Register)	rrent time: 02-19-2010, 02:14 PM
OMath! / Math Forums 数学讨论 / Number Theory / Chinese Remainder Theory	/
Thread Rating:	K NEW REPLY
Chinese Remainder Theory	Threaded Mode Linear Mode
02-17-2010, 03:09 PM (This post was last modified: Yesterday 12:51 AM by elim.)	Post: #1
elim 🖁	Posts: 6
Junior Member	Joined: Feb 2010 Reputation: 0
Chinese Remainder Theory	
The theorem statement: $((n_i, n_j) = 1, 1 \le j \le j \le k) \Rightarrow$	
$V(\alpha, \alpha, \beta) \in \mathbb{N}^{k}$ $\exists x \alpha \in \mathbb{N}^{k}$ $\forall x \alpha = \alpha \pmod{n}$	i — I K
$\mathbf{v}(a_1, \cdots, a_k) \in \mathbf{v}_0 \exists \mathbf{x}_0 \in \mathbf{v}_0 \mathbf{x}_0 = a_i(\operatorname{IIIOU} n_i)$	$I = I, I, \Lambda$
$(x \equiv a_i \pmod{n_i})$ $i = \frac{1}{N} \Leftrightarrow (x \equiv x_0 \pmod{n_i})$	$(1 \cdots n_k))$
	1 11 <u>K</u>))
$N = \frac{1}{K} \frac{K}{K} n_{ij} (n_i N/n_i) = 1$	
$\exists s_i, t_i \in \mathbf{Z}: s_i n_i + t_i (N/n_i) = 1 i = 1, K$	
$\sum_{i=1}^{n} e_i = t_i (N/n_i) \text{ then } (e_i \equiv 0 \pmod{n_i}) i \neq j) \land (e_i \equiv 1 \pmod{n_i})$	od n _i))
$\sum_{i=1}^{K} X_0 = \prod_{i=1}^{K} a_i e_i \text{ satisfies } X_0 \equiv a_i \pmod{n_i} i = 1, K$	
Now	
$x \equiv a_i \pmod{n_i}$ $i = 1, K \Leftrightarrow x - x_0 \equiv 0 \pmod{n_i}, i = 1$	$, \stackrel{\acute{K}}{K} \Leftrightarrow (x \equiv x_0 \pmod{N}))$
Q.E.D	
As an example, we look at HanXing's Soldier Counting (韩信点兵)	

七子团圆正半月,除百零五便得知。	
The Chinese above is a mystery poem-code of (**) below:	
$ x \equiv \sqrt{0} x^{j_3} + 21 x^{j_5} + 15 x^{j_7} (\text{mod } 105) $ (105 = 3 × 5 × 7) Where $x^{j_j} = \min\{m \in \mathbb{N} : j (x - m)_{j_s} \text{ the remainder of } x \text{ by } j. $	
The poem, in English sounds roughly like this to me:	
Rarely you see 3 men walking together all above 70's, But 5 and 21 surely show the beauty of plum blossoms, 7 sons' reunion expects full moon at middle month sky, with these to a multiple of 105 you figure it out all!	
Note: In Chinese lunar calendar, full moon always appears at the middle of the month. which implies number 15.	
Let's say someone chose a number in mind with remainders of 3,5 and 7 respectively as: (1) U, 1, 1 Then $/U \times U + 21 \times 1 + 15 \times 1$ Thene the number in mind is $30 + 105$ for some $n \in \mathbb{Z}$ (2) 1, 4, UThen $/U \times 1 + 21 \times 4 + 15 \times U = Hende the number in mind is 49 + 105 forsome n \in \mathbb{Z}(3) 1, 3, 4 Then /U \times 1 + 21 \times 3 + 15 \times 4 = Hende the number in mind is 88 + 105 forsome n \in \mathbb{Z}.If we know the number's range is [K, K + 105 for some K \in \mathbb{Z}, we then get the definite answer.So if you ask people choose a number from [1, 100 and let them to provide the remainders withrespect to 3,5 and 7, you know exactly what in their mind. This is quite amazing for most people.But in US, figure out remainders is already too hard for most people That's why we are good atcomplicated measure systems: Let computer figure things out.$	
« Next Oldest Next Newest » Enter Keywords Search Thread	
View a Printable Version Send this Thread to a Friend Subscribe to this thread	
Contact Us Advisors-Online Return to Top Return to Content Lite (Archive) English (American) Go	
Powered By MyBB, © 2002-2010 MyBB Group.	