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An Improved Near- to Far-Zone Transformation for
the Finite-Difference Time-Domain Method

Torleif Martin, Student Member, IEEE

_Abstract—Near- to far-zone transformation for the finite- surface. When applying this to FDTD, which has spatially
difference time-domain (FDTD) method can be performed by shifted £- and H-fields, the normal procedure is to spatially
integration of the equivalent electric and magnetic currents orig- average the tangentidi-fields (or the E-fields) from two

inating from scattered electric and magnetic fields on a surface di t ol that th d field ts th
enclosing the object. Normally, when calculating the surface adjacent planes, so tha € averaged Tieids represents the

integrals, either the electric or magnetic fields are averaged values at the grid plane where the tangenitaffields (or
since the electric and magnetic fields are spatially shifted in the the H-fields) are positioned. This procedure is commonly
FDTD grid. It is shown that this interpolation is unnecessary ysed but seldom discussed in detail and among the published
and also less accurate than if an integration is performed on work on the subject referenced in this paper, it is only

two different surfaces. It is also shown that the accuracy of . . - . -
the far-zone transformation can be further improved if the explicitly mentioned in [4]-[6] and in [11]. In other published

phase is compensated with respect to a second-order dispersionWork, the details of integrating the surface currents are not
corrected wavenumber. For validation, scattering results for an treated although, in some cases, the derivations indicate that

empty volume, a circular disk, and a sphere are compared with this approach is used. Ramahi has shown that by using

analytical solutions. the Kirchhoff's surface integral representation instead of the
Index Terms—FDTD methods. traditional vector potentials, the field interpolation can be
avoided [8].

In this paper, an integral procedure is presented which is
o . _ _ based on the integration of equivalent surface currents but
EAR- to far-zone transformation in conjunction withwhere field interpolation is avoided. This resides from the fact
finite-difference time-domain (FDTD) has lately becomenat the numerical interpretation of the equivalence theorem
more frequently used. Due to the fast development of compggr FDTD uses the tangential electric and magnetic fields on
ers and the ability to model complex metal or dielectric objectgyo spatially shifted surfaces in order to reproduce the fields
FDTD has become a powerful tool for antenna and radg a closed source-free region [9]. It will be shown that if these
cross-section (RCS) calculations. To the author's knowledggirfaces are treated separately a more accurate transform can
the first published papers on near- to far-zone transformatipa achieved than if averaged fields on a single surface are used.
for FDTD appeared in the early eighties by Umashankar amgis requires that a proper choice of phase function is made.
Taflove [1], [2]. Since then a number of such calculationhe remaining errors due to numerical dispersion can also be
have been published (for example, see [3]-[8], [10], [11]jurther reduced by a correction of the wave number. The wave
The near- to far-zone transformation is normally performe&gimber appears in the Green’s function and a second-order
in the frequency domain, which requires that the scatterg@proximation of the numerical wave number is used instead
fields are transformed into the frequency domain either Ry the nondispersive wave number.
a discrete Fourier transform (DFT) or a fast Fourier transform
(FFT). Luebberset al. [4] and Yeeet al. [5] derived similar Il. NEAR- TO FAR-ZONE TRANSFORMATION
time-domain far-zone transformations, which is well suited L
i : The usual derivation procedure for near-zone to far-zone
for problems where time-domain results or a large number of . ; !
. . fransformations starts with the surface equivalence theorem
frequencies are required. The FDTD near- to far-zone transf?r- . . . .
. . . rom which the equivalent electric and magnetic currents can
mation technique has also been extended to objects over Iogsy . : .
. . : e’extracted on a surface enclosing the scattering object (or
dielectric half-planes [6], [7]. Recently, Ramahi presented a . )

. . . ! antenna). The scattered field in the far zone can then be
near- to far-zone transformation using the Kirchhoff’s surface:_ . . . . -
. . derived by integrating the equivalent currents multiplied (or
integral representation [8].

i . . convolved in the time domain) with a free-space Green's
In an analytical case, equivalent electric and magne?c

currents multiplied with a Green’s function can be integrateHr?Ctlon' Following the notation in [12], if the observation

on a surface enclosing the object yielding the far-zone field%,(.)mt 'S N the_ far field kr > 1), the vector potentialsl and
can be written as

The analytical surface-equivalence theorem requires that both

I. INTRODUCTION
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where the equivalent electric and magnetic surface currents are H,(i,j.k) H,(ij.k)
S, M (i.j.k) ' M (i.k) :
J,=axH . TTTT== —&V @—f——-—>@ - -

M,=-iaxE @ 1 s
Yy

X 1

where the scattered electric and magnetic fields are assumed 1 Bk
to be calculated on the same surfa€eWhen applying this n v AMARY
technique in FDTD calculations the above formula must be
applied on the electric and magnetic fields extracted froRy. 1. FDTD grid at the boundary of the equivalent surfaces showing only

; ; ; ; ; e tangential components. The current componkitt, j, k) is positioned
the Yee g.”d' IT the integration _Surfa.ce lies in the pIangtlthe same position &, (i, j, k) and calculated usingl, (. j, k). TheE,
of tangential E-fields, the tangentiat{-fields values on the anqp, fields liesA/2 above theE, - andH, fields (closer to the viewer).
integration surface are usually obtained by interpolation of
points on .either side of the sgrface since the electric angd upper Huygen'sXY surface are (see Fig. 1)
magnetic fields are spatially shifted.

E,(ij k) '
IGigk)

The electric field in the far zone can then be determine(E;}“(i, g, k) =E"i, j, k) + %
by [12] eAy
[HITYR(6 g, k) — HIPYR(E -1, k)]
By =—jw(As + k) 4 _ &t
; Az
Ey =—jw(Ay — nky) (5) ° o .
) [Hg+l/2(lv 7, k) - H;H—I/Q(ILv I, k - 1)]
where n is the free-space wave impedance. The spatially _ At Jn+1/2(i’ j, k) ©6)
averaged fields will cause some errors in the transform that are eAz ¥

negligible at low frequencies but, as the frequency increasgd)ere
the_p_hase shift bet.ween two cells in the Yee.g_rid will be T2 G k) = H;nc[t = (n+1/2)At 4, . k] (7)
sufficiently high to introduce small but nonnegligible errors )
(mainly in phase) when interpolating the fields. When interpa¢hich will compensate foff *° = 0 on the outer boxs = —2
lating fields at different positions in the frequency domair this case). Note that the source appears at the position of
it would probably be preferable to use a geometric medie E.: field but depends on &, field a half cell from theZ,
value instead of an arithmetic mean value, which has bek@ld in the direction perpendicular to the surface. The surface
demonstrated for impedance calculations in FDTD [13]. Theurrentis actually converted into an equivalent volume current
reason for that is that a geometric mean value usually givéigce it is divided with the thickness of the layek) in (6).
a better phase estimate between the two field componentsGenerally, denoting the outer surfac®, and the inner
However, below, it will be shown that the interpolatiorsurfacesS., the equivalent currents that reproduce the fields
procedure is unnecessary and also slightly less accurate thide a closed volume can be written as
if the integration is performed on two different surfa_ce;. J,|s. =f x Hls, (8)

The procedure above assumed that the only existing cur- .

. . MS|5]LI—’IT,)<E'|Se (9)
rents were surface currents orsimgle surface enclosing the
object. One of the early published work where the equivalenederen is the surface normal pointing into the volume afd
theorem was utilized in conjunction with FDTD is the papesind H are the fields that will be reproduced inside the volume.
describing the Huygen’s source implementation in FDTD [9]. The coordinates of the field values on the right-hand side
The sources derived in [9] are placed on two different surfacéRHS) of (8) and (9), relative to the current positions, are
one for the electric currents and one for the magnetic currergiifted a half-cell size in the direction parallel to the surface
In a rectangular FDTD grid, these currents flow at the surfacermal (see Fig. 1). In the context of a Huygen’s source in
of two different rectangular boxes separated a half-cell size=DTD, these currents fully reproduce the fields inside the

In the case of Huygen’s sources for reproducing the fiellume; that is, if dispersion errors are ignored.
inside the boxes with a zero field on the outside, assume thaBy changing the direction of the surface normal these
the outer box is defined by locations of tangenttaifields currents will reproduce the fields outside a volume due to the
and the inner box is defined by the locations of tangentigburces inside it, as in the case of the near-zone to far-zone
E-fields. In the FDTD advance equations, when updating th&nsformation. Inserting (8) and (9) in (1) and (2), denoting
E-fields on the inner surface, the electric currénts added to the source vector spanning tle surface byr’, and the source
the field-advance equations such as (6). Althougliepends vector spanning theé;, surface byr} yields
on the H-fields on the outer surface it should be regarded to

R . R L. . Cijkr . T
be spatially located on the inner surface since it is a sourceA(#)rprp = “4 - // i x H|g, ¢?¥7e 48’ (10)
for the electric fieldsVice versa the magnetic currents are m S
regarded to be spatially located on the outer surface although e o—dkr

they depend on the electric field values on the inner surface £ (#)rprp = — - // i x Els, &™™ds’.  (11)
As an example, the field advance equations&efi, j, k) on S
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Note that the integrals in (10) and (11) depend on phase -20
factors calculated at a different position than the position
of the fields. The integration is performed on two different
surfaces using the source fields at the “dual” surface. In the -40
following text this integration procedure will, therefore, be |
regarded as anixed surfaceransform, while using a single
surface in combination with averaged fields will be calledE
single surfacetransform. By replacing the integrals by SUMSE _7o
this can be easily incorporated in the FDTD code. It caﬁ
be shown that the mixed-surface transform is consistent with
respect to the numerical equivalence of the reciprocity theorem -90
if the equivalent sources are created using the method in | [ o o o
[9]. By using the mixed surface transform instead of using ---  Single surface
averaged field values at a single surface, a large number of'10f
numerical interpolation operations can be saved. It will also _ix ‘ . . . ‘ , . .
be shown to be more accurate than the interpolation procedure. ° 20 40 60 8 1100 120 140 160 180
The concep_ts can allso be applied in the tl.me_domam far-zp'g}e_ 2. Numerical bistatic RCS of an empty FDTD volume 2020 x 20
transformation. In this case, the retarded times that determlggg@, The frequency is 2 GHz, which correspondsite: 15Az. The plane
the time samples of the field to be used must be calculateae is incident from 180
using the position of the current vector at the “dual” surface.
The corresponding expressions for the vector potentials in tHieections. However, in the numerical case the FDTD suffers
time domain at a distance are from dispersion, which will cause distortions depending on the
propagated path length of the plane wave. The distortion will
Anr then vary along the sides of the surface where the equivalent
X r—Fr currents are determined. This will lead to an erroneous field
[ s Je- (22 s
Se

-60r

A(r, t)rpTp =

that does not cancel in all directions.
To illustrate the different transform methods a plane wave
(12) was created using a surface of Huygen's sources spanning
F(r, £)rpTD ___& a volume of 30x 30 x 30 cells. The Gaussian pulsed
drr plane wave was propagating in the positivdirection. Inside
// A x Els [t _ <7’ _'F"’Jh>:| ds’. the Huygen’s sources the far-zone integration procedure was
‘ c applied on a surface enclosing a volume by200 x 20 cells.
The equivalent currents on this surface were transformed into
the frequency domain by a DFT while marching in time. The
I§cattered field expressed as a bistatic radar cross section at
f5Hz as function of the polar angkis shown below (the
ane wave was incident from 180 The cell size was 0.01

Sk,
(13)

Note that theH-fields in (12) are extracted at a time ste
determined by the retarded time calculated at the surface
tangential E-fields. The opposite holds for th&-fields in pial N
(13). When extracting the fields linear interpolation betwedR N all directions. _

two time steps should be used if the time delay is a decimal™"S S€€n from Fig. 2, the RCS of both trgnsfprn!atmn_s has a
fraction, as described in [4]. The scatterdgfield in the common local maximum in the forward direction®jOvhich

far zone can then be calculated by the corresponding tin{g-€XPected since the distorted plane wave is propagating in
domain expressions for (4) and (5) (replacing with a time this direction and the far-zone contribution of the two opposite
derivative). ’ surfaces of the computational volume are subtracted slightly

out of phase. In this case, the phase error is proportional to the
propagated path length in the computational volume. For the
lll. VERIFICATION IN FREE-SPACE single-surface transformation the highest maximum occurs at
Normally, when using Huygen'’s sources for creating a plargout 48. Using the mixed surface concepts reduces the error
wave in scattering problems, the equivalent currents used fsamatically at all other angles. The maximum value ‘ats0
far-zone transformation are determined on a closed surfafeout—26 dBnt (which corresponds the area of 25 FDTD
outside the Huygen’s sources so that only the scattered fiegtiigl cells). This can be compared with the maximum RCS of
are transformed. One way of examining the properties afperfectly conducting target in FDTD consisting of only one
the far-zone transformation routine is to apply it on a plargingle E-field component, which is approximately56 dBnt
wave propagating through the computational volume with r@g this frequency 4z = 0.01 m).
scattering object present, simply by placing the transforma-At other angles the errors using the mixed-surface transform
tion surfaceinside the Huygen's sources. Considering thére significantly lower than the errors produced using a single-
analytical case, since the plane wave is source-free wittidrface transform. The error can be even further reduced
the surface where the far-zone transformation is appligél,the dispersion relationship is taking into account when
the transformation will result in zero scattered fields in afransforming the fields to the far zone.
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IV. DISPERSION COMPENSATION 1.4 , .

The near- to far-zone transformation can be improved even ~__ Approximative
further if performed in the frequency domain. By adjusting 12r | —  Exact
the phase factorl**™) in (10) and (11) to the true nu-
merical phase factor valid in the FDTD grid, the far-zone
transformation errors due to dispersion can be further reduced.
The dispersion relationship for the FDTD-grid can be derived\oo‘s_
as [14] °

1k

0.6
1 wAt\1? 1 kwAx 0.4}
— s — = |-—si
cAt 2 Ax
. 2 . 2 0.2r 1
1 . [ kAy 1 . (kA
+ A_y sin <T> + ~ sm< 5 )] (14) . , ‘ ‘ . .
0 0.5 1 1 2 2.5 3

5
Frequency (GHz)

wherek is the numerical wavevector. Thus, usibginstead of Fig. 3. Relative difference between numerical wavenumbers and analytical

L# in the exponent of the phase factor. a reduction of the erm@venumber for a plane wave propagating in thdirection. The curves are
.. il ' . . computed for a timestep of 95% of the three-dimensional Courant stability

can be expected. This is difficult, however, since solving (1{}Sterion_

for k», k,, and k. are not straightforward. An approximate

solution can be found by using series expansionssfarz.

The technique has been used when analyzing nonuniform grids-3°

in [15], although a slightly different approach is used in the -40

-20

derivation below. Expressing as _s0}
L ) ) -60
k =k = k(s,& + 5,4+ s.2) (15 ¢
m -70
s
where g -8
-90
Sy = cos @ sin 6 -100
sy = sin ¢ sin 6 -110

———  Mixed surface

s, = cos (16) _120f —— Single surface ]
Uncompensated Mixed/Single

-130 , ]
and expanding thein?(x) terms on the RHS of (14) and °© 20 40 60 80 100 120 140 160 160

retaining second-order terms yields Fig. 4. Numerical bistatic RCS of an empty FDTD volume, 2@®0 x 20

cells. In both far-zone transforms a dispersion compensated wavenumber has
1 WAt 2 ];.2 ];.4 been used. Th(_e f(equency is 2 GHz, which corresponds 0 15Ax. The

[— sin <T>} o — — (stAx? 4 siAyQ + s*A~?). plane wave is incident from 180 The uncompensated results according to

T2 48 Fig. 2 are also included as dotted lines.

(17) To illustrate the accuracy of (18), the relative difference

_ _ o (k — k)/k, betweenk as obtained from (18) and (19) and
The solution to this equation is given by k = w/c, is shown in Fig. 3. The cell size &z = 0.01 m so
that 3 GHz corresponds to a free-space wavelength afz10
2 As seen from the figure the correspondence is very good.
k= 6 1— \/1 _ ép2 [L sin <W_At>} (18) By using the compensated wavenumber from (18) in the
phase factor when calculating the far-zone transformation the
errors shown in Fig. 2 can be reduced. This is shown in
Fig. 4. The level at © is dramatically reduced. At other
gﬁgles the error is reduced several decibels for the mixed-
Sufface transform. The single-surface transform is not affected
A other angles than arounél.0’he RCS of the empty volume
when using the mixed-surface transform is below5 dBn?
for all angles, which corresponds to an area of 0.03 FDTD
grid cells and which is approximately the maximum RCS
arcsin [ﬁ sin <W_At>} (19) of a single E-field, which is set to zero. Since the analytic
A 2 solution (19) can be used instead of (18) at certain angles a

wherep? = stAx? + 5;Ay* + st Az%. The highest level of
dispersion occurs at propagation angles that are parallel to
of the Cartesian axes in the FDTD grid. In this case, a soluti

to (14) can easily be found. Consider for example that z
in (15). Equation (14) can then be rewritten as

i =

Az
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PML-boundary In case numbers 1 and 2, the results are presented for
\ values between 0 and 3&0In case number 3, the results
_ . are presented fat-values between 0 and 90in computating
Disk 2 number 3, both polarizations of the scattered field are created.
- — —:— L — . The far-zone transformation was performed in the frequency
| | | domain in all cases.
, | | When comparing the results with the analytical solution one
Lj\{ | J‘ must keep in mind that the spatial discretization in FDTD
Near to Far'zone implies that the object is slightly larger than indicated by
X ;f‘frfgi(gmaﬁon the coordinates of the tangenti@i-fields. This is due to
the FDTD representation of the object by tangenfiafields
Fig. 5. Schematic drawing(Z slice) of the computational volume. that actually represents an average value over one cell. In

) ) . accordance to the results presented by Trueetaal. [18],
far-zone computation was done at 0 and 188ing (19) in o agjustment of a half-cell of the disk radius was made

order to get an indication of where a possible lowest lev@lya computing the analytical results, i.e., the radius was
of the compensated mixed-surface transform lies. Attt 505 1.

level was —88.5 dBnf and at 180 the level was—118
dBm. This is approximately 15-20 dBilower than the gonteq in two diagrams covering F86ach of the 36D turn

values at the corresponding scattering angles in Fig. 4. T |n order to demonstrate the improvements achieved by
type of compensation procedure is unfortunately difficult tgjng poth the mixed-surface transform and the dispersion

implement in the time-domain version of the near- to far'zo%rrection, these results are compared with the single surface
transformation. transform with no dispersion correction.

In order to facilitate the comparison, the results are pre-

V. SCATTERING FROM CIRCULAR DISK

In order to verify a numerical model it is feasible to comparg |ncident Plane Wave Fromh — 240° TE-Polarization
the numerical results with analytical results. A common usettattering Plane= Incidence Plane
object for three-dimensional problems is the sphere of which . . _ .
an analytical solution exist (Mie series solution). Another The .b|st¢_'=1t|c RCS n the mudent plane at 1.5 GHz is
object of which an analytical solution exists is the circular disl?.hov".n in Fig. 6. In this scattering plane only TE components
This solution is also a series solution, although slightly mo ntribute to the RCS. The magnitude correspondence with

complex than the sphere solution. The solution used in e analytical solution is improved when using the mixed-

paper is based on expansion of the scattered field in spher%érlf":lce concept. The left peak at abouf 86 due to the

vector wavefunctions and the T-matrix method, published lgﬁrward scattering and the right peak is the specular reflection.
the backscattering region the amplitudes are much lower

Kristensson and Waterman [16]. !

A disk of radius 0.2 m was modeled in EDTD usin han in the forward-scattering region. The correspondence
a cell size of 0.01 m which corresponds to 20 cells i etween theory and calculations is, therefore, reduced and

radius. The computational volume was 120120 x 80 cells. the difference is about 2 dB at most for the 20-cell-radius

The computations were performed using the scattered fiéﬁﬁk' The largest differences occur at scattering angles 90

formulation of FDTD. The integration surface for far-zon(?md 270, which corresponds to directions in the plane of

transformation was placed five cells from the disk at close e disk. In the chkscgtterlng region (180-36the results_
r the 80-cell-radius disk are also included. The resolution

(35 cells from the outer boundary). In addition, a computati i

with a highly resolved disk (80 cells in radius) was done iﬁ] th|T:_ca56ebcoLreshpondsfto 80 c_elllj per wavelength. Asl seen
one case for comparison in scattering regions with relativel?™ '9: (b), both transforms yield more accurate results as

large errors. The boundary condition was a six-layer perfec xpected in this case, but the single-surface transform deviates

matched layer (PML) [17] (a larger number of PML's wer ore around 230 and 310

tested without any improvement of the results). A slice of the I_n Fig. 7 thelrfieg,ugs atﬁ GHz ?refdls;t):a)ée(z)d. Irlllthed_bacg_siat—
computational volume can be seen in Fig. 5. tering region (180-360), the results for the 80-cell-radius dis

The following examples will be discussed (see Fig. 5 i@e also included. The resolution in this case corresponds to
explanation of symbols) ' 60 cells per wavelength. As seen from the diagrams the single-
1) Incident ol 'f @ — 240°. Polarizati surface transformation results starts to deviate more from
) dr_1C| Ient palne Wi\(e .rg — TE. ?aFr:Iza |onfper%en— the analytical solution than the mixed-surface transformation
'C(;J ar ?tp f’;\neol Incigence (t@égo )I. ane otiNCIAenCEys its. Even at 60 cells per wavelength the error is over 2 dB
and scatienng plane was n plane. _for the single-surface transform but only 0.6 dB for the mixed-
2) Plane of incident as in case 1, polarization parallel wi

the ol ¢ incid T™ pol). Scatteri | th rface transform. In order to quantify the differences in error
€ piane ot incidence ( _ pol). Scattering plane Between the two methods, the linear relative error defined by
same as the plane of incidence.

3) Plane of incident and polarization as in case 1 (TE pol),
# = 225°, and scattering plane perpendicular to the plane Norr = IFDTD — Analytic (20)
of incidence Y Z plane). T Analytic
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9 FDTD-single surf. 8
T o
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& -20
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-25
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-30
-28+- b \ /
Nl /
-30 : : y . : - : ‘ : . : : . ) ) . .
180200 220 240 260 280 300 320 340 360 180 200 220 240 260 280 300 320 340 360
90
(b) )
Fig. 6. (@) Bistatic RCS of circular disk at 1.5 GHx £ 20 cells); TE pol. (®)
Plane wave incidence from = 240°. Scattering angle 0-180 (b) Bistatic Fig. 7. (a) Bistatic RCS of circular disk at 2.0 GHx & 15 cells); TE pol.

RCS of circular disk at 1.5 GHz\(= 20 cells and\ = 80 cells); TE pol.
Plane wave incidence from = 240°. Scattering angle 180-360

Plane wave incidence from = 240°. Scattering angle 0-180 (b) Bistatic
RCS of circular disk at 2.0 GHz\(= 15 cells andA = 60 cells); TE pol.
Plane wave incidence fromh = 240°. Scattering angle 180-3860

and the absolute error defined by

mixed surface transform is much better also in this region.
The dispersion compensation effects are negligible at these
was computed at 2 GHz between 0 and 386r the dif- scattering angles. On an average, the mixed-surface transfprm
ferent transformation methods. Additionally, to illustrate thEeduces the error at least by a factor of two compared with
influence of the dispersion compensation for both transforn{8€ Single-surface transform.

the results with and without the dispersion compensation was o

computed. The results for the 20-cell-radius disk are displayBd Incident Plane Wave froh = 240°, TM-Polarization

in Figs. 8 and 9. In the forward-scattering region (betweenfattering Plane= Incidence Plane

and 180) where the scattering amplitude is relatively high, When the polarization of the incident field lies in the plane
the relative error is well below 20% for the mixed-surfacefincidence (TM) the accuracy between the analytical solution
transform. For the single-surface transform the errors are muaiid the numerical results is high for both the single-surface and
higher. In this region, the dispersion compensation has a sttt mixed-surface transform methods. The results at 2 GHz are
but nonnegligible effect on the results. For the mixed-surfadésplayed in Fig. 10(a) and (b). Between 0 and18& mixed-
transform at most the relative error is reduced from 21.5 surface transform agrees excellent with the analytical solution,
13% at 90. In the backscattering region (between 180 anghile the single-surface transform deviates slightly from the
360°), the relative errors are much higher due to the loanalytical solution. The agreement between the single-surface
amplitudes in this region. As seen from Figs. 8 and 9 theansform and the analytical solution between 180 and 360

(21)

Terr = OFDTD — T Analytic
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is incident from# = 240°. Scattering angle 180-360

much better in this case compared with the TE case. Close to
the scattering angle 27Che single-surface transform agrees

even better with the analytical solution than the mixed-surface
transform. However, due to the low scattering amplitudes An often used object in validation studies is the sphere since
the uncertainty of the results is higher for both methodbe analytical solution is widely known and examples can be
in this backscattering region compared with the forwardeund in most textbooks treating electromagnetic scattering

VI. M ONOSTATIC SCATTERING FROM A SPHERE

scattering region. problems. In this paper, we restrict ourselves to backscat-
tering from a perfectly conducting sphere of radius 0.205

C. Incident Plane Wave frorh = 240° TE-Polarization m, which was modeled in FDTD with a radius of 20 cells

Scattering Plane Perpendicular to Incidence Plane and a resolution of 0.01 m. The results for the monostatic

In the third example, the scattering plane is perpendicularf®°S in a linear scale can be seen in Fig. 13, where the
the plane of incidence. In this plane, both polarizations of tHeCS has been normalized with the projected area of the
scattered field will be created. The bistatic RCS at 2.5 GHz$§here £a?). Since modeling the sphere with FDTD is a
displayed for the two polarizations separately in Figs. 11 agifficult problem due to the staircasing representation of the
12. The agreement is relatively good between both transfosurface, it is difficult to compare the two transforms with
methods and the analytical solution despite the low-scatteriifip analytical solution at high frequencies. The presentation
amplitudes at these scattering angles. Generally, the mixefi-the results are, therefore, limited to frequencies below 1
surface transform agrees better with the analytical soluti@Hz, which corresponds to a wavelength >30 cells. Also,
than the single-surface transform. in this case, it is clear that the mixed-surface transform
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6
Scattering angle 0-80and = 90°. [6]

corresponds better to the analytical result than the singlg]
surface transform.

[8]
VII. CONCLUSION
It has been shown that by applying the FDTD version of theg;
surface equivalence theorem, the far-zone transformation using
vector potentials can be improved. It is important to distinguish
between the position of the equivalent current and the positiﬂr&]
of the field it is calculated from. This transformation procedure
not only improves the accuracy, it is also simpler since no
spatial interpolation of field values is necessary. Also, the el
zone transformation is further improved by compensating the
wavenumber due to dispersion. [12]
(13]
ACKNOWLEDGMENT
The author would like to thank Prof. G. Kristensson ofy4
University of Lund for valuable correspondence concerning

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL.

46, NO. 9, SEPTEMBER 1998

4 T T 1 T

Analytical
FDTD-mixed surf.
FDTD-single surf.

N

-

0 I
0.2

0.4 0.6
Frequency (GHz)

13. Normalized monostatic RCS of a sphere as function of frequency.

Linear scale.

analytic solution for the disk and Dr. L. Pettersson for

helpful discussions.

REFERENCES

K. R. Umashankar and A. Taflove, “A novel method to analyze elec-
tromagnetic scattering of complex object$FEE Trans. Electromagn.
Compat.,vol. EMC-24, pp. 397-405, Nov. 1982.

A. Taflove and K. Umashankar, “Radar cross section of general three-
dimensional scatterers|EEE Trans. Electromagn. Compatol. EMC-

25, pp. 433-440, Nov. 1983.

A. Taflove, K. R. Umashankar, and T. G. Jurgens, “Validation of FD-
TD modeling of the radar cross section of three-dimensional structures
spanning up to nine wavelength$ZEE Trans. Antennas Propagatol.
AP-33, pp. 662-666, June 1985.

R. J. Luebbers, K. S. Kunz, M. Schneider, and F. Hunsberger, “A finite-
difference time-domain near zone to far zone transformatitBEE
Trans. Antennas Propagatpl. 39, pp. 429-433, Apr. 1991.

K. S. Yee, D. Ingham, and K. Shlager, “Time-domain extrapolation to
the far field based on {FDTD} calculationsfEEE Trans. Antennas
Propagat.,vol. 39, pp. 410-413, Mar. 1991.

K. Demarest, Z. Huang, and R. Plumb, “An FDTD near- to far-zone
transformation for scatterers buried in stratified groundSEE Trans.
Antennas Propagatyol. 44, pp. 1150-1157, Aug. 1996.

P. B. Wong, G. L. Tyler, J. E. Baron, E. M. Gurrola, and R. A.
Simpson, “A three-wave FDTD approach to surface scattering with
applications to remote sensing of geophysical surfack<EE Trans.
Antennas Propagatyol. 44, pp. 504-513, Apr. 1996.

O. M. Ramahi, “Near- and far-field calculations in FDTD simulations
using Kirchhoff surface integral representatioffEE Trans. Antennas
Propagat.,vol. 45, pp. 753-759, May 1997.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing
a numeric Huygen’s source scheme in a finite difference program to
illuminate scattering bodiesJEEE Trans. Nucl. Scivol. 27, no. 6, pp.
1829-1833, Dec. 1980.

C. L. Britt, “Solution of electromagnetic scattering problems using
time-domain techniquesJEEE Trans. Antennas Propagatol. 37, pp.
1181-1192, Sept. 1989.

1] M. J. Barth, R. R. McLeod, and R. W. Ziolkowski, “A near- and far-

field projection algorithm for finite-difference time-domain code3,”
Electromagn. Waves Applicauol. 6, no. 1, pp. 5-18, 1992.

C. A. Balanis,Advanced Engineering ElectromagneticdNew York:
Wiley, 1989.

J. Fang and D. Xeu, “Numerical errors in the computation of impedances
by {FDTD} method and ways to eliminate them|EEE Microwave
Guided Wave Lettyol. 5, pp. 6-8, Jan. 1995.

A. Taflove, Computational Electrodynamics: The Finite-Difference
Time-Domain Method. Boston, MA: Artech House, 1995.



MARTIN: IMPROVED NEAR- TO FAR-ZONE TRANSFORMATION FOR THE FDTD METHOD 1271

[15] J. Svigelj and R. Mittra, “Grid dispersion error using the nonuni
form orthogonal finite-difference time-domain metholllicrowave Opt.
Technol. Lett.vol. 10, no. 4, pp. 199-201, 1995.

[16] G. Kristensson and P. C. Waterman, “The T matrix for acoustic ar
electromagnetic scattering by circular disk3,’Acoust. Soc. Amenopl.
72, no. 5, pp. 1612-1625, Nov. 1982.

[17] J.-P. Berenger, “A perfectly matched layer for the absorption of ele
tromagnetic waves,J. Comput. Phys.yol. 114, no. 1, pp. 185-200, > ) f
1994. electromagnetic environmental effects. Since 1995,

[18] C. W. Trueman, R. J. Luebbers, S. R. Mishra, and C. Larose, “FD he has been working as a Research Officer at the

computation of the RCS of high permittivity cubes,” lIBEE Antennas De[_)artment of Microwave Techno_logy, Divisi_on of
Propagat. Soc. Int. SympAnn Arbor, M, June 1993, vol. 2, pp. Sensor Technology, Swedish Defence Research Establishment. His area of

846-849 interest includes computational electromagnetics, in particular, the FDTD
' method.

Torleif Martin  (S'96) was born in Uppsala, Swe-
den, on December 27, 1962. He received the M.Sc.
degree in engineering physics in 1989 from Uppsala
University, Uppsala, Sweden. He is currently work-
ing toward the Ph.D. degree in theoretical physics
at the Linloping Institute of Technology, Sweden.
From 1989 to 1995, he worked as a System
Engineer at Saab Military Aircraft, mainly with




