
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 9, SEPTEMBER 1998 1263

An Improved Near- to Far-Zone Transformation for
the Finite-Difference Time-Domain Method

Torleif Martin, Student Member, IEEE

Abstract—Near- to far-zone transformation for the finite-
difference time-domain (FDTD) method can be performed by
integration of the equivalent electric and magnetic currents orig-
inating from scattered electric and magnetic fields on a surface
enclosing the object. Normally, when calculating the surface
integrals, either the electric or magnetic fields are averaged
since the electric and magnetic fields are spatially shifted in the
FDTD grid. It is shown that this interpolation is unnecessary
and also less accurate than if an integration is performed on
two different surfaces. It is also shown that the accuracy of
the far-zone transformation can be further improved if the
phase is compensated with respect to a second-order dispersion
corrected wavenumber. For validation, scattering results for an
empty volume, a circular disk, and a sphere are compared with
analytical solutions.

Index Terms—FDTD methods.

I. INTRODUCTION

NEAR- to far-zone transformation in conjunction with
finite-difference time-domain (FDTD) has lately become

more frequently used. Due to the fast development of comput-
ers and the ability to model complex metal or dielectric objects,
FDTD has become a powerful tool for antenna and radar
cross-section (RCS) calculations. To the author’s knowledge,
the first published papers on near- to far-zone transformation
for FDTD appeared in the early eighties by Umashankar and
Taflove [1], [2]. Since then a number of such calculations
have been published (for example, see [3]–[8], [10], [11]).
The near- to far-zone transformation is normally performed
in the frequency domain, which requires that the scattered
fields are transformed into the frequency domain either by
a discrete Fourier transform (DFT) or a fast Fourier transform
(FFT). Luebberset al. [4] and Yeeet al. [5] derived similar
time-domain far-zone transformations, which is well suited
for problems where time-domain results or a large number of
frequencies are required. The FDTD near- to far-zone transfor-
mation technique has also been extended to objects over lossy
dielectric half-planes [6], [7]. Recently, Ramahi presented a
near- to far-zone transformation using the Kirchhoff’s surface-
integral representation [8].

In an analytical case, equivalent electric and magnetic
currents multiplied with a Green’s function can be integrated
on a surface enclosing the object yielding the far-zone fields.
The analytical surface-equivalence theorem requires that both
the electric and magnetic surface currents lies on the same
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surface. When applying this to FDTD, which has spatially
shifted - and -fields, the normal procedure is to spatially
average the tangential -fields (or the -fields) from two
adjacent planes, so that the averaged fields represents the
values at the grid plane where the tangential-fields (or
the -fields) are positioned. This procedure is commonly
used but seldom discussed in detail and among the published
work on the subject referenced in this paper, it is only
explicitly mentioned in [4]–[6] and in [11]. In other published
work, the details of integrating the surface currents are not
treated although, in some cases, the derivations indicate that
this approach is used. Ramahi has shown that by using
the Kirchhoff’s surface integral representation instead of the
traditional vector potentials, the field interpolation can be
avoided [8].

In this paper, an integral procedure is presented which is
based on the integration of equivalent surface currents but
where field interpolation is avoided. This resides from the fact
that the numerical interpretation of the equivalence theorem
for FDTD uses the tangential electric and magnetic fields on
two spatially shifted surfaces in order to reproduce the fields
in a closed source-free region [9]. It will be shown that if these
surfaces are treated separately a more accurate transform can
be achieved than if averaged fields on a single surface are used.
This requires that a proper choice of phase function is made.
The remaining errors due to numerical dispersion can also be
further reduced by a correction of the wave number. The wave
number appears in the Green’s function and a second-order
approximation of the numerical wave number is used instead
of the nondispersive wave number.

II. NEAR- TO FAR-ZONE TRANSFORMATION

The usual derivation procedure for near-zone to far-zone
transformations starts with the surface equivalence theorem
from which the equivalent electric and magnetic currents can
be extracted on a surface enclosing the scattering object (or
antenna). The scattered field in the far zone can then be
derived by integrating the equivalent currents multiplied (or
convolved in the time domain) with a free-space Green’s
function. Following the notation in [12], if the observation
point is in the far field ( ), the vector potentials and

can be written as

(1)

(2)
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where the equivalent electric and magnetic surface currents are

(3)

where the scattered electric and magnetic fields are assumed
to be calculated on the same surface. When applying this
technique in FDTD calculations the above formula must be
applied on the electric and magnetic fields extracted from
the Yee grid. If the integration surface lies in the plane
of tangential -fields, the tangential -fields values on the
integration surface are usually obtained by interpolation of
points on either side of the surface since the electric and
magnetic fields are spatially shifted.

The electric field in the far zone can then be determined
by [12]

(4)

(5)

where is the free-space wave impedance. The spatially
averaged fields will cause some errors in the transform that are
negligible at low frequencies but, as the frequency increases,
the phase shift between two cells in the Yee grid will be
sufficiently high to introduce small but nonnegligible errors
(mainly in phase) when interpolating the fields. When interpo-
lating fields at different positions in the frequency domain,
it would probably be preferable to use a geometric mean
value instead of an arithmetic mean value, which has been
demonstrated for impedance calculations in FDTD [13]. The
reason for that is that a geometric mean value usually gives
a better phase estimate between the two field components.
However, below, it will be shown that the interpolation
procedure is unnecessary and also slightly less accurate than
if the integration is performed on two different surfaces.

The procedure above assumed that the only existing cur-
rents were surface currents on asingle surface enclosing the
object. One of the early published work where the equivalence
theorem was utilized in conjunction with FDTD is the paper
describing the Huygen’s source implementation in FDTD [9].
The sources derived in [9] are placed on two different surfaces,
one for the electric currents and one for the magnetic currents.
In a rectangular FDTD grid, these currents flow at the surface
of two different rectangular boxes separated a half-cell size.

In the case of Huygen’s sources for reproducing the field
inside the boxes with a zero field on the outside, assume that
the outer box is defined by locations of tangential-fields
and the inner box is defined by the locations of tangential

-fields. In the FDTD advance equations, when updating the
-fields on the inner surface, the electric currentis added to

the field-advance equations such as (6). Althoughdepends
on the -fields on the outer surface it should be regarded to
be spatially located on the inner surface since it is a source
for the electric fields.Vice versa, the magnetic currents are
regarded to be spatially located on the outer surface although
they depend on the electric field values on the inner surface.
As an example, the field advance equations for on

Fig. 1. FDTD grid at the boundary of the equivalent surfaces showing only
the tangential components. The current componentJx(i; j; k) is positioned
at the same position asEx(i; j; k) and calculated usingHy(i; j; k). TheEx

andHy fields lies�x=2 above theEy- andHx fields (closer to the viewer).

an upper Huygen’s surface are (see Fig. 1)

(6)

where

(7)

which will compensate for on the outer box (
in this case). Note that the source appears at the position of
the field but depends on a field a half cell from the
field in the direction perpendicular to the surface. The surface
current is actually converted into an equivalent volume current
since it is divided with the thickness of the layer () in (6).

Generally, denoting the outer surface and the inner
surface , the equivalent currents that reproduce the fields
inside a closed volume can be written as

(8)

(9)

where is the surface normal pointing into the volume and
and are the fields that will be reproduced inside the volume.

The coordinates of the field values on the right-hand side
(RHS) of (8) and (9), relative to the current positions, are
shifted a half-cell size in the direction parallel to the surface
normal (see Fig. 1). In the context of a Huygen’s source in
FDTD, these currents fully reproduce the fields inside the
volume; that is, if dispersion errors are ignored.

By changing the direction of the surface normal these
currents will reproduce the fields outside a volume due to the
sources inside it, as in the case of the near-zone to far-zone
transformation. Inserting (8) and (9) in (1) and (2), denoting
the source vector spanning the surface by and the source
vector spanning the surface by yields

(10)

(11)



MARTIN: IMPROVED NEAR- TO FAR-ZONE TRANSFORMATION FOR THE FDTD METHOD 1265

Note that the integrals in (10) and (11) depend on phase
factors calculated at a different position than the position
of the fields. The integration is performed on two different
surfaces using the source fields at the “dual” surface. In the
following text this integration procedure will, therefore, be
regarded as amixed surfacetransform, while using a single
surface in combination with averaged fields will be called
single surfacetransform. By replacing the integrals by sums
this can be easily incorporated in the FDTD code. It can
be shown that the mixed-surface transform is consistent with
respect to the numerical equivalence of the reciprocity theorem
if the equivalent sources are created using the method in
[9]. By using the mixed surface transform instead of using
averaged field values at a single surface, a large number of
numerical interpolation operations can be saved. It will also
be shown to be more accurate than the interpolation procedure.
The concepts can also be applied in the time-domain far-zone
transformation. In this case, the retarded times that determines
the time samples of the field to be used must be calculated
using the position of the current vector at the “dual” surface.
The corresponding expressions for the vector potentials in the
time domain at a distance are

(12)

(13)

Note that the -fields in (12) are extracted at a time step
determined by the retarded time calculated at the surface of
tangential -fields. The opposite holds for the -fields in
(13). When extracting the fields linear interpolation between
two time steps should be used if the time delay is a decimal
fraction, as described in [4]. The scattered-field in the
far zone can then be calculated by the corresponding time-
domain expressions for (4) and (5) (replacing with a time
derivative).

III. V ERIFICATION IN FREE-SPACE

Normally, when using Huygen’s sources for creating a plane
wave in scattering problems, the equivalent currents used for
far-zone transformation are determined on a closed surface
outside the Huygen’s sources so that only the scattered fields
are transformed. One way of examining the properties of
the far-zone transformation routine is to apply it on a plane
wave propagating through the computational volume with no
scattering object present, simply by placing the transforma-
tion surface inside the Huygen’s sources. Considering the
analytical case, since the plane wave is source-free within
the surface where the far-zone transformation is applied,
the transformation will result in zero scattered fields in all

Fig. 2. Numerical bistatic RCS of an empty FDTD volume 20� 20� 20
cells. The frequency is 2 GHz, which corresponds to� = 15�x. The plane
wave is incident from 180�.

directions. However, in the numerical case the FDTD suffers
from dispersion, which will cause distortions depending on the
propagated path length of the plane wave. The distortion will
then vary along the sides of the surface where the equivalent
currents are determined. This will lead to an erroneous field
that does not cancel in all directions.

To illustrate the different transform methods a plane wave
was created using a surface of Huygen’s sources spanning
a volume of 30 30 30 cells. The Gaussian pulsed
plane wave was propagating in the positivedirection. Inside
the Huygen’s sources the far-zone integration procedure was
applied on a surface enclosing a volume by 2020 20 cells.
The equivalent currents on this surface were transformed into
the frequency domain by a DFT while marching in time. The
scattered field expressed as a bistatic radar cross section at
2 GHz as function of the polar angleis shown below (the
plane wave was incident from 180). The cell size was 0.01
m in all directions.

As seen from Fig. 2, the RCS of both transformations has a
common local maximum in the forward direction (0) which
is expected since the distorted plane wave is propagating in
this direction and the far-zone contribution of the two opposite
surfaces of the computational volume are subtracted slightly
out of phase. In this case, the phase error is proportional to the
propagated path length in the computational volume. For the
single-surface transformation the highest maximum occurs at
about 45. Using the mixed surface concepts reduces the error
dramatically at all other angles. The maximum value at 0is
about 26 dBm (which corresponds the area of 25 FDTD
grid cells). This can be compared with the maximum RCS of
a perfectly conducting target in FDTD consisting of only one
single -field component, which is approximately56 dBm
at this frequency ( m).

At other angles the errors using the mixed-surface transform
are significantly lower than the errors produced using a single-
surface transform. The error can be even further reduced
if the dispersion relationship is taking into account when
transforming the fields to the far zone.
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IV. DISPERSIONCOMPENSATION

The near- to far-zone transformation can be improved even
further if performed in the frequency domain. By adjusting
the phase factor in (10) and (11) to the true nu-
merical phase factor valid in the FDTD grid, the far-zone
transformation errors due to dispersion can be further reduced.
The dispersion relationship for the FDTD-grid can be derived
as [14]

(14)

where is the numerical wavevector. Thus, usinginstead of
in the exponent of the phase factor, a reduction of the error

can be expected. This is difficult, however, since solving (14)
for , , and are not straightforward. An approximate
solution can be found by using series expansions for .
The technique has been used when analyzing nonuniform grids
in [15], although a slightly different approach is used in the
derivation below. Expressing as

(15)

where

(16)

and expanding the terms on the RHS of (14) and
retaining second-order terms yields

(17)

The solution to this equation is given by

(18)

where . The highest level of
dispersion occurs at propagation angles that are parallel to one
of the Cartesian axes in the FDTD grid. In this case, a solution
to (14) can easily be found. Consider for example that
in (15). Equation (14) can then be rewritten as

(19)

Fig. 3. Relative difference between numerical wavenumbers and analytical
wavenumber for a plane wave propagating in thex direction. The curves are
computed for a timestep of 95% of the three-dimensional Courant stability
criterion.

Fig. 4. Numerical bistatic RCS of an empty FDTD volume, 20� 20� 20
cells. In both far-zone transforms a dispersion compensated wavenumber has
been used. The frequency is 2 GHz, which corresponds to� = 15�x. The
plane wave is incident from 180�. The uncompensated results according to
Fig. 2 are also included as dotted lines.

To illustrate the accuracy of (18), the relative difference
, between as obtained from (18) and (19) and

, is shown in Fig. 3. The cell size is m so
that 3 GHz corresponds to a free-space wavelength of 10.
As seen from the figure the correspondence is very good.

By using the compensated wavenumber from (18) in the
phase factor when calculating the far-zone transformation the
errors shown in Fig. 2 can be reduced. This is shown in
Fig. 4. The level at 0 is dramatically reduced. At other
angles the error is reduced several decibels for the mixed-
surface transform. The single-surface transform is not affected
at other angles than around 0. The RCS of the empty volume
when using the mixed-surface transform is below55 dBm
for all angles, which corresponds to an area of 0.03 FDTD
grid cells and which is approximately the maximum RCS
of a single -field, which is set to zero. Since the analytic
solution (19) can be used instead of (18) at certain angles a
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Fig. 5. Schematic drawing (XZ slice) of the computational volume.

far-zone computation was done at 0 and 180using (19) in
order to get an indication of where a possible lowest level
of the compensated mixed-surface transform lies. At 0the
level was 88.5 dBm and at 180 the level was 118
dBm . This is approximately 15–20 dBmlower than the
values at the corresponding scattering angles in Fig. 4. This
type of compensation procedure is unfortunately difficult to
implement in the time-domain version of the near- to far-zone
transformation.

V. SCATTERING FROM CIRCULAR DISK

In order to verify a numerical model it is feasible to compare
the numerical results with analytical results. A common used
object for three-dimensional problems is the sphere of which
an analytical solution exist (Mie series solution). Another
object of which an analytical solution exists is the circular disk.
This solution is also a series solution, although slightly more
complex than the sphere solution. The solution used in this
paper is based on expansion of the scattered field in spherical
vector wavefunctions and the T-matrix method, published by
Kristensson and Waterman [16].

A disk of radius 0.2 m was modeled in FDTD using
a cell size of 0.01 m, which corresponds to 20 cells in
radius. The computational volume was 120120 80 cells.
The computations were performed using the scattered field
formulation of FDTD. The integration surface for far-zone
transformation was placed five cells from the disk at closest
(35 cells from the outer boundary). In addition, a computation
with a highly resolved disk (80 cells in radius) was done in
one case for comparison in scattering regions with relatively
large errors. The boundary condition was a six-layer perfectly
matched layer (PML) [17] (a larger number of PML’s were
tested without any improvement of the results). A slice of the
computational volume can be seen in Fig. 5.

The following examples will be discussed (see Fig. 5 for
explanation of symbols).

1) Incident plane wave from . Polarization perpen-
dicular to plane of incidence (TE pol). Plane of incidence
and scattering plane was in the plane.

2) Plane of incident as in case 1, polarization parallel with
the plane of incidence (TM pol). Scattering plane the
same as the plane of incidence.

3) Plane of incident and polarization as in case 1 (TE pol),
, and scattering plane perpendicular to the plane

of incidence ( plane).

In case numbers 1 and 2, the results are presented for
values between 0 and 360. In case number 3, the results
are presented for-values between 0 and 90. In computating
number 3, both polarizations of the scattered field are created.
The far-zone transformation was performed in the frequency
domain in all cases.

When comparing the results with the analytical solution one
must keep in mind that the spatial discretization in FDTD
implies that the object is slightly larger than indicated by
the coordinates of the tangential-fields. This is due to
the FDTD representation of the object by tangential-fields
that actually represents an average value over one cell. In
accordance to the results presented by Truemanet al. [18],
an adjustment of a half-cell of the disk radius was made
when computing the analytical results, i.e., the radius was
0.205 m.

In order to facilitate the comparison, the results are pre-
sented in two diagrams covering 180each of the 360 turn
of . In order to demonstrate the improvements achieved by
using both the mixed-surface transform and the dispersion
correction, these results are compared with the single surface
transform with no dispersion correction.

A. Incident Plane Wave From TE-Polarization
Scattering Plane Incidence Plane

The bistatic RCS in the incident plane at 1.5 GHz is
shown in Fig. 6. In this scattering plane only TE components
contribute to the RCS. The magnitude correspondence with
the analytical solution is improved when using the mixed-
surface concept. The left peak at about 60is due to the
forward scattering and the right peak is the specular reflection.
In the backscattering region the amplitudes are much lower
than in the forward-scattering region. The correspondence
between theory and calculations is, therefore, reduced and
the difference is about 2 dB at most for the 20-cell-radius
disk. The largest differences occur at scattering angles 90
and 270, which corresponds to directions in the plane of
the disk. In the backscattering region (180–360) the results
for the 80-cell-radius disk are also included. The resolution
in this case corresponds to 80 cells per wavelength. As seen
from Fig. 6(b), both transforms yield more accurate results as
expected in this case, but the single-surface transform deviates
more around 230 and 310.

In Fig. 7 the results at 2 GHz are displayed. In the backscat-
tering region (180–360), the results for the 80-cell-radius disk
are also included. The resolution in this case corresponds to
60 cells per wavelength. As seen from the diagrams the single-
surface transformation results starts to deviate more from
the analytical solution than the mixed-surface transformation
results. Even at 60 cells per wavelength the error is over 2 dB
for the single-surface transform but only 0.6 dB for the mixed-
surface transform. In order to quantify the differences in error
between the two methods, the linear relative error defined by

(20)
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(a)

(b)

Fig. 6. (a) Bistatic RCS of circular disk at 1.5 GHz (� = 20 cells); TE pol.
Plane wave incidence from� = 240

�. Scattering angle 0–180�. (b) Bistatic
RCS of circular disk at 1.5 GHz (� = 20 cells and� = 80 cells); TE pol.
Plane wave incidence from� = 240

�. Scattering angle 180–360�.

and the absolute error defined by

(21)

was computed at 2 GHz between 0 and 360for the dif-
ferent transformation methods. Additionally, to illustrate the
influence of the dispersion compensation for both transforms,
the results with and without the dispersion compensation was
computed. The results for the 20-cell-radius disk are displayed
in Figs. 8 and 9. In the forward-scattering region (between 0
and 180) where the scattering amplitude is relatively high,
the relative error is well below 20% for the mixed-surface
transform. For the single-surface transform the errors are much
higher. In this region, the dispersion compensation has a small
but nonnegligible effect on the results. For the mixed-surface
transform at most the relative error is reduced from 21.5 to
13% at 90. In the backscattering region (between 180 and
360 ), the relative errors are much higher due to the low
amplitudes in this region. As seen from Figs. 8 and 9 the

(a)

(b)

Fig. 7. (a) Bistatic RCS of circular disk at 2.0 GHz (� = 15 cells); TE pol.
Plane wave incidence from� = 240

�. Scattering angle 0–180�. (b) Bistatic
RCS of circular disk at 2.0 GHz (� = 15 cells and� = 60 cells); TE pol.
Plane wave incidence from� = 240

�. Scattering angle 180–360�.

mixed surface transform is much better also in this region.
The dispersion compensation effects are negligible at these
scattering angles. On an average, the mixed-surface transform
reduces the error at least by a factor of two compared with
the single-surface transform.

B. Incident Plane Wave from , TM-Polarization
Scattering Plane Incidence Plane

When the polarization of the incident field lies in the plane
of incidence (TM) the accuracy between the analytical solution
and the numerical results is high for both the single-surface and
the mixed-surface transform methods. The results at 2 GHz are
displayed in Fig. 10(a) and (b). Between 0 and 180the mixed-
surface transform agrees excellent with the analytical solution,
while the single-surface transform deviates slightly from the
analytical solution. The agreement between the single-surface
transform and the analytical solution between 180 and 360is
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Fig. 8. Relative error of bistatic RCS between 0 and 360� at 2 GHz. The
errors for the single-surface transform around 270� is not shown and exceeds
1000%.

Fig. 9. Absolute error of bistatic RCS between 0 and 360� at 2 GHz.

much better in this case compared with the TE case. Close to
the scattering angle 270the single-surface transform agrees
even better with the analytical solution than the mixed-surface
transform. However, due to the low scattering amplitudes
the uncertainty of the results is higher for both methods
in this backscattering region compared with the forward-
scattering region.

C. Incident Plane Wave from TE-Polarization
Scattering Plane Perpendicular to Incidence Plane

In the third example, the scattering plane is perpendicular to
the plane of incidence. In this plane, both polarizations of the
scattered field will be created. The bistatic RCS at 2.5 GHz is
displayed for the two polarizations separately in Figs. 11 and
12. The agreement is relatively good between both transform
methods and the analytical solution despite the low-scattering
amplitudes at these scattering angles. Generally, the mixed-
surface transform agrees better with the analytical solution
than the single-surface transform.

(a)

(b)

Fig. 10. (a) Bistatic RCS of circular disk at 2.0 GHz (� = 15 cells); TM
pol. Plane wave is incident from� = 240

�. Scattering angle 0–180�. (b)
Bistatic RCS of circular disk at 2.0 GHz (� = 15 cells); TM pol. Plane wave
is incident from� = 240

�. Scattering angle 180–360�.

VI. M ONOSTATIC SCATTERING FROM A SPHERE

An often used object in validation studies is the sphere since
the analytical solution is widely known and examples can be
found in most textbooks treating electromagnetic scattering
problems. In this paper, we restrict ourselves to backscat-
tering from a perfectly conducting sphere of radius 0.205
m, which was modeled in FDTD with a radius of 20 cells
and a resolution of 0.01 m. The results for the monostatic
RCS in a linear scale can be seen in Fig. 13, where the
RCS has been normalized with the projected area of the
sphere ( ). Since modeling the sphere with FDTD is a
difficult problem due to the staircasing representation of the
surface, it is difficult to compare the two transforms with
the analytical solution at high frequencies. The presentation
of the results are, therefore, limited to frequencies below 1
GHz, which corresponds to a wavelength >30 cells. Also,
in this case, it is clear that the mixed-surface transform



1270 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 9, SEPTEMBER 1998

Fig. 11. Bistatic TE-component RCS of circular disk at 2.5 GHz (� = 12

cells). Incident field is TE pol. Plane wave is incident from� = 240
�.

Scattering angle 0–90� and' = 90
�.

Fig. 12. Bistatic TM-component RCS of circular disk at 2.5 GHz (� = 12

cells). Incident field is TE pol. Plane wave is incident from� = 240
�.

Scattering angle 0–90� and' = 90
�.

corresponds better to the analytical result than the single
surface transform.

VII. CONCLUSION

It has been shown that by applying the FDTD version of the
surface equivalence theorem, the far-zone transformation using
vector potentials can be improved. It is important to distinguish
between the position of the equivalent current and the position
of the field it is calculated from. This transformation procedure
not only improves the accuracy, it is also simpler since no
spatial interpolation of field values is necessary. Also, the far-
zone transformation is further improved by compensating the
wavenumber due to dispersion.
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