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Abstract
This paper proposes a Voice Activity Detection (VAD) algo-
rithm based on Conditional Random Fields (CRF) using mul-
tiple features. VAD is a technique used to distinguish between
speech and non-speech in noisy environments and is an impor-
tant component in many real-world speech applications. The
posterior probability of output labels in the proposed method is
directly modeled by the weighted sum of the feature functions.
Effective features are automatically selected by estimating ap-
propriate weight parameters to improve the accuracy of VAD.
Experimental results on the CENSREC-1-C database revealed
that the proposed approach can decrease error rates by using
CRF.
Index Terms: voice activity detection, conditional random
fields

1. Introduction
Various systems with speech interface have recently been devel-
oped as real world applications of speech technologies. One of
the most serious problems in these systems is how to obtain high
recognition rates in noisy environments. Noise-robust voice ac-
tivity detection (VAD), which is the task of separating conversa-
tional speech and non-speech, is one of the most important com-
ponents of ASR. For that reason, various types of VAD algo-
rithms have been proposed. In statistical VAD approaches [1],
Gaussian Mixture Model (GMM)-based VAD [2, 3] is a popular
technique. This method constructs two GMMs (i.e., speech and
non-speech GMMs) from the training data, and voice activity
is detected by calculating the probability of test data for each
GMM. However, we need to select the feature vectors for the
GMMs.

There are numerous features that are useful for VAD (e.g.,
amplitude, zero-crossing, MFCC and etc.) [4], and some of
these may be complementary and their degree of usefulness
may be different. Therefore, it is important how these various
features are combined and how useful information is extracted
from them. VAD is essentially a binary classification problem.
Therefore, discriminative machine learning techniques are ef-
fective (e.g., Support Vector Machine (SVM)) for solving it.
Although generative models (e.g., GMM) represent the data
variations of all feature dimensions in probability space, dis-
criminative approaches can select effective features automati-
cally to correctly classify training data. We proposed a VAD
system based on conditional random fields (CRF) [5]. CRF
can accommodate many statically correlated features of inputs,
and they are trained discriminatively. CRF also has an advan-
tage of flexibility to include a wide variety of arbitrary, non-
independent features of inputs. We can use multiple features as
united frames in the proposed method, and model the temporal
features of speech/non-speech labels.

The following section describes a VAD algorithm based on
CRF. Section 3 describes the features for VAD. The experimen-
tal results are presented in Section 4. The conclusion is given
and future work is described in the final section.

2. Voice activity detection based on
Conditional random fields

2.1. Conditional random fields

CRF involves a probabilistic framework that is widely used for
labeling and segmenting sequential data and it also performs
well in natural language processing. CRF is learned to maxi-
mize conditional probability P (y | x) written as :
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where Z(x) is a normalization factor over all candidate paths,
λk is a weight parameter for each feature function to be esti-
mated from the training data, fk is a feature function, and K
is the number of feature functions. A feature function fk repre-
sents the relation between inputs x and outputs y, and is defined
as :

fk(x, y) =

j
1 ((x, y) satisfies a particular condition)
0 (otherwise)

(3)

Weights are typically estimated by maximizing the conditional
log-likelihood of training data. The learned weight λk for each
feature function fk should intuitively be positive for features
that are correlated with the target label, negative for features
that are anti-correlated with the label, and near zero for rela-
tively uninformative features. CRF directly models the condi-
tional distribution P (y | x) which is used in final objectives
(e.g., recognition and detection), even though many statistical
approaches are based on a generative model P (x | y) of obser-
vation.

2.2. Proposed method for VAD

The CRF in the proposed method defines the conditional prob-
ability of a state sequence y given an input sequence x that is :
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where yt ∈ {0, 1} is a speech/non-speech label and xt =

[x
(1)
t , . . . , x

(D)
t ] is an observed feature vector at time t of di-

mension D. Two kinds of feature functions are defined for VAD.
The first is a transition feature function f

(a)
k (yt−1, yt) which

represents the correlation between two successive speech/non-
speech labels. This transition feature function is defined as :

f
(a)
k (yt−1, yt) =

j
1 ((yt−1, yt) = (yk, y′k))
0 (otherwise)

(5)
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Figure 1: Graphical model representation of CRF for VAD

where yk and y′k are specific labels that are dependent on k,

and weight λ
(a)
k corresponds to a state transition probability of

a hidden Markov Model (HMM). The other function is an ob-

servation feature function f
(b)
l,d (xt,d, yt), which is defined as :

f
(b)
l,d (xt,d, yt) =

j
xt,d (yt = y′l)
0 (otherwise)

(6)

where y′l is a label that depends on l. Although equation (6) is
defined as the first-order function of features, an arbitrary func-
tion can be used. The proposed CRF has a similar structure of

an HMM. The weight parameters, λ
(a)
k and λ

(b)
l,d , correspond to

the transition probability and the parameter of output probabil-
ity respectively. However, although a training HMM is typically
implemented using the maximum likelihood (ML) criterion, the
parameters of CRF are discriminatively trained because CRF
directly models the conditional distribution of a speech/non-
speech label sequence and the posterior probability of the cor-
rect label sequences is maximized. The proposed CRF has an
advantage in that the temporal correlation of speech/non-speech
labels can be modeled between successive frames, comparing it
with the VAD method based on SVM. Figure 1 has a graphical
model representation of a CRF for VAD.

The parameters of the CRF are trained to maximize the con-
ditional log-likelihood L(Λ) as :

Λ̂ = argmax
Λ

L(Λ)

= argmax
Λ

NX
n=1

log P (y(n) | x(n)) (7)

where (x(n), y(n)), n = 1, . . . , N represents the training data.
The following representation is used for simplicity.
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Then, equation (7) can be rewritten as follows.
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It can be seen from equation (9) that the model parameters that
separate the function value of the correct path from that of the
other paths can be estimated because the normalization factor
is the sum over all possible paths of F . Although the New-
ton method is often used to estimate CRF parameters, we sim-
ply used a gradient method that only used the first derivative of

L(Λ). The first derivative of each parameter is given in the next
equation.
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Although equations (10) and (11) involve expectations over all
possible label sequences, they can be efficiently calculated with
a procedure similar to the Forward-Backward algorithm used in
training of HMM (Baum-Welch algorithm). Then, the model
parameters that maximize the log-likelihood can be estimated
by repeating the gradient method and calculating the expecta-
tion. In detection, the best label sequence ŷ given an input se-
quence x can be written with equation (12).

ŷ = argmax
y

P (y | x) (12)

The solution to equation (12) is equivalent to the decision of
passing of the trellis, and it can be obtained with a similar pro-
cedure to that of the Viterbi algorithm.

3. Features for VAD
A VAD system determines the speech section by using features
that can be extracted from the input signal. The selection of the
features is important because the accuracy of VAD is decided by
what features are used as input sequences. We used five features
in the experiment.

We extracted f0, zero-crossing, and the amplitude of each
frame, and used the differences between these features of
speech detection and non-speech detection for VAD. F0 is
hardly ever observed in non-speech detection because it cannot
be observed from unvoiced sound. Zero-crossing is the number
at which the input signal crosses 0 during a given period, and
the number of zero-crossings tends to increase in speech detec-
tion. Amplitude is one of the features often used for VAD. It is
a very effective feature when the distance between the micro-
phone and the speaker is short and SNR is high. It is defined as
the average signal observed by using one frame.

3.1. GMM log likelihood

The log-likelihood of speech/non-speech GMMs is used as the
feature for VAD. The log-likelihood of an M-mixture GMM is
defined as :

o
(gmm)
t = log P (ot | λ)

= log

"
MX

i=1

wiN (ot | μi,Σi)

#
(13)

where λ denotes a set of model parameters, wi is the weight of
mixture i, and N (ot | μi,Σi) is the Gaussian basis function
with mean vector μi and covariance matrix Σi.
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Table 1: Result of VAD
Rest. Hi Rest. Lo St. Hi St. Lo

method FRR FAR FRR FAR FRR FAR FRR FAR

Baseline 24.59 6.69 38.15 23.70 7.84 60.09 29.97 44.72
GMM 18.58 25.72 27.61 48.97 20.21 14.87 25.38 27.50

Weighted GMM 31.39 12.00 48.57 24.57 28.17 4.41 38.80 9.42

〈C, G1, G2〉 10.60 5.37 33.38 28.36 13.44 1.61 21.23 2.68
〈C, G1, G2, Z〉 6.49 8.31 36.48 23.04 9.86 2.09 17.27 4.01
〈C, G1, G2, F0〉 13.77 6.52 33.78 28.56 13.91 1.76 19.76 3.05
〈C, G1, G2, A〉 16.90 7.78 28.87 27.07 17.99 1.42 22.35 2.97
〈C, G1, G2, P 〉 13.36 10.50 38.21 15.12 11.06 4.16 10.81 11.41

〈C, G1, G2, Z, F0〉 8.92 9.30 36.63 22.99 10.69 2.22 16.60 3.92
〈C, G1, G2, Z, A〉 16.91 7.72 28.91 27.07 17.91 1.42 22.27 2.96
〈C, G1, G2, Z, P 〉 13.36 10.50 38.26 15.12 11.06 4.16 10.94 11.41
〈C, G1, G2, F0, A〉 17.26 7.71 29.77 26.92 17.89 1.43 21.98 2.97
〈C, G1, G2, F0, P 〉 13.43 10.50 38.27 15.30 11.10 4.15 10.69 11.41
〈C, G1, G2, A, P 〉 14.72 10.71 39.23 17.55 12.24 3.21 10.19 9.61

〈C, G1, G2, Z, F0, A〉 17.27 7.67 29.83 26.92 17.89 1.43 21.98 2.98
〈C, G1, G2, Z, F0, P 〉 13.42 10.50 38.27 15.30 11.07 4.14 10.69 11.41
〈C, G1, G2, Z, A, P 〉 14.72 10.71 39.26 17.52 12.38 3.21 10.18 9.72
〈C, G1, G2, F0, A, P 〉 15.01 10.74 39.69 17.57 12.43 3.24 10.18 10.06
〈C, G1, G2, Z, F0, A, P 〉 15.01 10.75 39.26 17.57 12.43 3.21 10.18 10.06

3.2. Log posterior probability of GMM

The posterior probability of GMM is the probability belonging
to the mixture element m when the feature vector ot is given.
The posterior probability of the m-th mixture component is de-
fined as :

o
(pb,m)
t =

wmN (ot | μm,Σm)
MX

i=1

wiN (ot | μi,Σi)

(14)

4. Experiments
4.1. Experimental condition

To evaluate the performance of the proposed method, a VAD
experiment on the CENSREC-1-C database [6] was performed.
CENSREC-1-C is the platform for evaluating noisy speech
recognition, and contains data recorded in a real environment
and data created artificially. Speech signals were sampled at a
rate of 8 kHz and windowed with a 10-ms frame rate using a
25-ms Hamming window. Data recorded in two real environ-
ments were used, which were from a restaurant (Rest.) and a
street (St.) with two different sound pressure levels (Hi and
Lo). One set of speech and non-speech GMMs with 128 mix-
tures was trained using 64 files (including two environments ×
two SNRs) excluded from the evaluation data. The feature vec-
tors for GMMs consisted of 12th order mel-cepstral coefficients
including the zeroth coefficients and their delta and delta-delta
coefficients. The features of CRF in the proposed method were
defined as the log-likelihood of the GMM of speech (G1) and
non-speech (G2), zero-crossing (Z), f0 (F0), amplitude (A),
the log posterior probability of GMMs (P ), and the class index
(C). One CRF was constructed for all four noise conditions. In
other words, we assumed that the environment for the input sig-
nals was unknown and the CRF was modeled independently of
the environments. The training data consisted of 64 sentences
uttered by four speakers, and the evaluation data consisted of
16 sentences uttered by one speaker. The leave-one-out method
was used for the data from the five speakers. The VAD system
was evaluated in each frame where one frame was 10 ms, and

false rejection rate (FRR) and false acceptance rate (FAR) were
used.

FRR = NFR/Ns × 100 [%] (15)

FAR = NFA/Nns × 100 [%] (16)

where Ns and Nns denote the number of speech and non-
speech frames in correct labels, and NFR and NFA correspond
to the number of speech frames mis-detected as non-speech and
vice versa.

4.2. Results

Table 1 lists the results for the restaurant and street with high
SNR and low SNR, and Figures 2–5 plot the FRR and FAR un-
der all conditions. “Baseline” in Table 1 is energy-based VAD
with adaptive thresholding [6]. The threshold value was deter-
mined to minimize the value of FAR plus FRR using all environ-
ment data. “GMM” is the technique using the comparison of the
log-likelihood of speech/non-speech, and “Weighted GMM” is
CRF-based VAD without the transition feature function. The
method denoted by 〈·〉 is the CRF-based VAD we propose with
the features listed in angles. For example, 〈C, G1, G2〉 rep-
resents the CRF using the log-likelihood of speech and non-
speech GMMs as features.

It can be seen from the results that the proposed method
performed the best under all noise conditions. Comparing
“Weighted GMM” with 〈C, G1, G2〉, we can see the latter out-
performed the former. This is because 〈C, G1, G2〉 had the
transition feature function and the temporal correlations be-
tween the speech/non-speech labels were effectively used for
VAD. Although the best combination of features was different
in each environment, zero-crossing seemed effective under all
conditions.

Focusing on Figures 2–5, “Baseline” with varying thresh-
olds are represented, and the proposed method is represented by
the squares in the four figures. In the street environments (Fig-
ures 4 and 5), “GMM” and “Weighted GMM” obtained lower
error rates than “Baseline”. Furthermore, CRF-based VAD
outperformed the GMM-based methods because transition and
multiple observation features were used. In the restaurant envi-
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Figure 2: VAD in restaurant with high SNR
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Figure 3: VAD in restaurant with low SNR

ronments (Figures 2 and 3), GMM-based methods were worse
than “Baseline”. This may be because background noise in a
restaurant includes speech noise from other people. Although
the CRF-based methods used the GMM likelihood, they ob-
tained similar or lower error rates by utilizing other features.
This means that CRF estimated appropriate weights for transi-
tion and observation feature functions, and successfully selected
effective features for VAD automatically.

5. Conclusion
We proposed a VAD technique based on CRF. Using two
different feature functions, i.e., the transition-feature and
observation-feature functions, appropriate weights could be es-
timated for multiple features in each speech/non-speech state.
The proposed method obtained better results than the conven-
tional methods in the experiments using only the log-likelihood
of GMMs. In future work, it is necessary to evaluate the pro-
posed approach in various environments. Investigations into
useful features and an optimal model structure for VAD also
needs to be done in future work.
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