Overview of GPU Suitability and Progress of CFD Applications

NASA Ames Applied Modeling & Simulation (AMS) Seminar – 21 Apr 2015

Stan Posey; sposey@nvidia.com; NVIDIA, Santa-clara, CA, USA

Agenda: GPU Suitability and Progress of CFD

NVIDIA HPC Introduction

CFD Suitability for GPUs

CFD Progress and Directions

NVIDIA - Core Technologies and Products

GPUs Mainstream Across Diverse HPC Domains

FY14 Segments

World's Top 3 Servers are GPU-Accelerated

Tesla GPU Progression During Recent Years

rest	2012 (Fermi) M2075	2014 (Kepler) K20X	2014 (Kepler) K40	2014 (Kepler) K80	Kepler / Fermi
Peak SP Peak SGEMM	1.03 TF	3.93 TF 2.95 TF	4.29 TF 3.22 TF	8.74 TF	4 x
Peak DP Peak DGEMM	.515 TF	1.31 TF 1.22 TF	1.43 TF 1.33 TF	2.90 TF	3 x
Memory size	6 GB	6 GB	12 GB	24 GB (12 each)	2 x
Mem BW (ECC off)	150 GB/s	250 GB/s	288 GB/s	480 GB/s (240 each)	2 x
Memory Clock		2.6 GHz	3.0 GHz	3.0 GHz	
PCIe Gen	Gen 2	Gen 2	Gen 3	Gen 3	2 x
# of Cores	448	2688	2880	4992 (2496 each)	5x
Board Power	235W	235W	235W	300W	0% – 28%

Note: Tesla K80 specifications are shown as aggregate of two GPUs on a single board

GPU Motivation (II): Energy Efficient HPC

Top500 Rank	TFLOPS/s	Site SUPERCOMPUTER SITES
1	33,862.7	National Super Computer Centre Guangzhou
2	17,590.0	Oak Ridge National Lab #1 USA
3	17,173.2	DOE, United States
4	10,510.0	RIKEN Advanced Institute for Computational Science
5	8,586.6	Argonne National Lab
6	6,271.0	Swiss National Supercomputing Centre (CSCS) #1 Europe
7	5,168.1	University of Texas
8	5,008.9	Forschungszentrum Juelich
9	4,293.3	DOE, United States
10	3,143.5	Government

Green500 Rank	MFLOPS/W	Site Site
1	4,389.82	GSIC Center, Tokyo Tech KFC
2	3,631.70	Cambridge University
3	3,517.84	University of Tsukuba
4	3,459.46	SURFsara
5	3,185.91	Swiss National Supercomputing (CSCS)
6	3,131.06	ROMEO HPC Center
7	3,019.72	CSIRO
8	2,951.95	GSIC Center, Tokyo Tech 2.5
9	2,813.14	Eni
10	2,629.10	(Financial Institution)
16	2,495.12	Mississippi State (top non- NVIDIA) Intel Phi
59	1,226.60	ICHEC (top X86 cluster)

GPU Motivation (III): Advanced CFD Trends

Higher fidelity models within manageable compute and energy costs

Increase in non-deterministic ensembles to manage/quantify uncertainty

HOMs for improved resolution of transitional and vortex-heavy flows

Accelerator technology identified as a cost-effective and practical approach to future computational challenges

NVIDIA Strategy for GPU-Accelerated HPC

Strategic Alliances

- Business and technical alliances with COTS vendors
- Investment in long-term collaboration for solver-level libraries
- Development of collaborations with academic research community:
 - Examples in CFD: Imperial College—Vincent, Oxford—Giles, Wyoming—Mavriplis, GMU—Lohner, UFRJ—Coutinho, TiTech—Aoki, GWU—Barba, SU—Jameson, others

Software Development

- Libraries cuSPARSE, cuBLAS; OpenACC with PGI (acquisition) and Cray
- NVIDIA linear solver toolkit with emphasis on AMG for industry CFD

Applications Support

- Application engineering support for COTS vendors and customers
 - Implicit Schemes: Integration of libraries and solver toolkit
 - Explicit Schemes: Stencil libraries, OpenACC for directives-based

Agenda: GPU Suitability and Progress of CFD

CFD Suitability for GPUs

CFD Progress and Directions

Increasing Development Effort

CFD Characteristics and GPU Suitability

What is Meant by "CFD Practice"

- These are not demonstrators, rather meaningful developments towards production use CFD
 - Proven performance on large-scale engineering simulations
 - Long-term maintenance and software engineering considerations
 - Co-design efforts between CFD scientists and computer scientists
 - In most cases, contributions from NVIDIA devtech engineering

Select GPU Implementations (Summary)

	Organization	Location	Software	GPU Approach
COMAC 🛞	COMAC/SJTU	China	SJTU RANS	Fortran and CUDA
Southampton	U Southhampton	UK	HIPSTAR	Fortran and OpenACC
Turbostream	Turbostream	UK	Turbostream	Fortran, python templates s-to-s to CUDA
(H)	GE GRC	US	ТАСОМА	Fortran and OpenACC
Rolls-Royce	Rolls Royce	UK	HYDRA	Fortran, python DSL s-to-s to CUDA-F
BAE SYSTEMS	BAE Systems	UK	Flare	C++ and s-to-s templates to CUDA
STANFORD UNIVERSITY	Stanford U	US	SD++	C++ and CUDA
Imperial College	PyFR	UK	PyFR	Python s-to-s to CUDA (C for CPU)
Cfms H	CFMS	UK	Hyperflux	Python s-to-s to CUDA (C for CPU)
	JENRE, Propel	US	USA	C++ and Thrust templates for CUDA
ANSYS	ANSYS Fluent	US	Implicit FEA	C++ and AmgX library, OpenACC
FluiDyna	FluiDyna	DE	Culises/OpenFOAM	C++ (OpenFOAM), AmgX library, CUDA
🛆 Altair	Altair	US	AcuSolve	Fortran and CUDA
Autodesk	Autodesk	US	Moldflow	Fortran and AmgX library

Select GPU Developments at Various Stages

Organization	ation Location Software GPU Approach		GPU Approach	
U Wyoming /Mavriplis	US	Not specific	CU++ object oriented templates	
GMU / Lohner	US	FEFLO	Python Fortran-to-CUDA translator	
SpaceX	US	Not specific	C++ and CUDA	
CPFD	US	BARRACUDA	Fortran and CUDA	
GWU / Barba	US	Not specific	C++, python, pyCUDA	
UTC Research	US	Combustion	Fortran and CUDA	
Convergent Science / LLNL	US	CONVERGE	C++ and CUDA, cuSOLVE (NVIDIA)	
Craft Tech	US	CRAFT, CRUNCH	Fortran and CUDA, OpenACC	
Bombardier	CA	Not specific	C++ and CUDA	
DLR	DE	TAU	Fortran and CUDA	
ONERA	FR	elsA	Fortran and CUDA	
Vratis	PL	Speed-IT (OFOAM)	C++ and CUDA	
NUMECA	BE	Fine/Turbo	Fortran and OpenACC	
Prometech	JP	Particleworks	C++ and CUDA	
TiTech / Aoki	JP	Not specific	C++ and CUDA	
JAXA	JP	UPACS	Fortran and OpenACC	
KISTI / Park	KR	KFLOW	Fortran and CUDA, OpenACC	
VSSC	IN	PARAS3D	Fortran and CUDA	

NVIDIA AmgX for Iterative Implicit Methods

- Scalable linear solver library for Ax = b iterative methods
- No CUDA experience required, C API: links with Fortran, C, C++
- Reads common matrix formats (CSR, COO, MM)
- Interoperates easily with MPI, OpenMP, and hybrid parallel
- Single and double precision; Supported on Linux, Win64
- Multigrid; Krylov: GMRES, PCG, BiCGStab; Preconditioned variants
- Classic Iterative: Block-Jacobi, Gauss-Seidel, ILU's; Multi-coloring
- Flexibility: All methods as solvers, preconditioners, or smoothers
- Download AmgX library: <u>http://developer.nvidia.com/amgx</u>

NVIDIA AmgX Weak Scaling on Titan 512 GPUs

Use of 512 nodes on ORNL TITAN System

- Poisson matrix with ~8.2B rows solved in under 13 sec (200e3 Poisson matrix per GPU)
- ORNL TITAN: NVIDIA K20X one per node; CPU 16 core AMD Opteron 6274 @2.2GHz

Agenda: GPU Suitability and Progress of CFD

CFD Suitability for GPUs

CFD Progress and Directions

Progress Summary for GPU-Parallel CFD

GPU progress in CFD research continues to expand Growth from arithmetic intensity in high-order methods Breakthroughs with Hyper-Q feature (Kepler), GPUDirect, etc.

Strong GPU investments by commercial (COTS) vendors Breakthroughs with AmgX linear solvers and preconditioners Preservation of costly MPI investment: GPU 2nd-level parallelism

Success in end-user developed CFD with OpenACC Most benefits currently with legacy Fortran, C++ emerging

GPUs behind fast growth in particle-based commercial CFD New commercial developments in LBM, SPH, DEM, etc. OpenACC Acceleration of TACOMA at GE GRC

Tri-Hybrid Computational Fluid Dynamics on DOE's Cray XK7, Titan.

Aaron Vose[†], Brian Mitchell^{*}, and John Levesque[‡].

Cray User Group, May 2014.

GE Global Research: *mitchellb@ge.com — Cray Inc.: †avose@cray.com, ‡levesque@cray.com.

Abstract — A tri-hybrid port of General Electric's in-house, 3D, Computational Fluid Dynamics (CFD) code TACOMA is created utilizing MPI, OpenMP, and OpenACC technologies. This new port targets improved performance on NVidia Kepler accelerator GPUs, such as those installed in the world's second largest supercomputer, Titan, the Department of Energy's 27 petaFLOP Cray XK7 located at Oak Ridge National Laboratory. We demonstrate a 1.4x speed improvement on Titan when the GPU accelerators are enabled. We highlight key optimizations and techniques used to achieve these results. These optimizations enable larger and more accurate simulations than were previously possible with TACOMA, which not only improves GE's ability to create higher performing turbomachinery blade rows, but also provides "lessons learned" which can be applied to the process of optimizing other codes to take advantage of tri-hybrid technology with MPI, OpenMP, and OpenACC.

Source: <u>https://cug.org/proceedings/cug2014_proceedings/includes/files/pap113.pdf</u> <u>http://on-demand-gtc.gputechconf.com/gtc-quicklink/e7FnYI</u>

OpenACC Acceleration of TACOMA at GE GRC

Source: <u>https://cug.org/proceedings/cug2014_proceedings/includes/files/pap113.pdf</u> <u>http://on-demand-gtc.gputechconf.com/gtc-quicklink/e7FnYI</u>

NASA FUN3D and 5-Point Stencil Kernel on GPUs

- **CPU**: E5-2690 @ 3Ghz, 10 cores
- GPU: K40c, boost clocks, ECC off
- **Case**: DPW-Wing, 1M cells
- 1 call of point_solve5 over all colors
- No data transfers in GPU results
- **1 CPU core**: 300ms
- **10 CPU cores**: 44ms (6.8x on 10)

- OpenACC1 = Unchanged code: 2.0x
- OpenACC2 = Modified code : 2.4x (same modified code runs 50% slower on CPUs)
- CUDA Fortran = Highly optimized CUDA version: 3.7x
- Compiler options (e.g. how memory is accessed) have huge influence on OpenACC results
- Possible compromise: CUDA for few hotspots, OpenACC for the rest
- Demonstrated good interoperability: CUDA can use buffers managed with OpenACC data clauses

ANSYS Fluent

ANSYS Fluent Convergence Behavior *Coupled vs segregated solver*

Coupling Momentum and Continuity Increases CFD Robustness

FLUENT technology introduces a pressure-based coupled solver to reduce computation time for low-speed compressible and incompressible flow applications.

By Frankiyn J. Kelecy, Applications Specialist, ANSYS, Inc.

TRUCK BODY MODEL (14 million cells)

ANSYS Fluent 14.5 GPU Solver Convergence Preview of ANSYS Fluent Convergence Behavior Matched CPU

Iteration Number

Numerical Results Mar 2012: Test for convergence at each iteration matches precise **Fluent behavior**

DVIDIA ANSYS

ANSYS Fluent and NVIDIA AmgX Solver Library

NVIDIA

ANSYS Fluent 15 Performance for 111M Cells

36

ANSYS Fluent 15.0 Performance – Results by NVIDIA, Dec 2013

48 GPUs – AmgX

AMG solver time per iteration (secs)

Fluent solution time per iteration (secs)

144 CPU cores

144 CPU cores + 48 GPUs

2 X

18

Truck Body Model

- 111M mixed cells
- External aerodynamics
- Steady, k-ε turbulence
- Double-precision solver
- CPU: Intel Xeon E5-2667; 12 cores per node
- GPU: Tesla K40, 4 per node

NOTE: AmgX is a linear solver toolkit from NVIDIA, used by ANSYS

ANSYS Fluent 16 Performance for 14M Cells

ANSYS Fluent 16.0 Performance – Results by NVIDIA, Dec 2014

Truck Body Model

- Steady RANS model
- External flow, 14M cells
- CPU: Intel Xeon E5-2697v2 @ 2.7GHz; 48 cores (2 nodes)
- GPU: 4 X Tesla K80 (2 per node)

NOTE: Time until convergence

NVIDIA

OpenFOAM

Typical OpenFOAM Use: Parameter Optimization

#1: Develop validated CFD model in ANSYS Fluent or other commercial CFD software in production

#2: Develop CFD model in OpenFOAM, validate against commercial CFD model

#3: Conduct parameter sweeps with OpenFOAM (procedure considered by many users to be cost-prohibitive using commercial CFD license models)

Culises: CFD Solver Library for OpenFOAM

Culises Easy-to-Use AMG-PCG Solver:

- #1. Download and license from http://www.FluiDyna.de
 #2. Automatic installation with FluiDyna-provided script
- **#3.** Activate Culises and GPUs with 2 edits to config-file

config-file CPU-only

config-file CPU+GPU

FluiDyna: TU Munich Spin-Off from 2006

Culises provides a linear solver library

Culises requires only two edits to control file of OpenFOAM

Multi-GPU ready

Contact FluiDyna for license details

www.fluidyna.de

Culises (with AmgX) Coupling to OpenFOAM

FluiDyna Culises: CFD Solver for OpenFOAM

developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0293-GTC2012-Culises-Hvbrid-GPU.pdf

Culises: A Library for Accelerated CFD on Hybrid GPU-CPU Systems Dr. Bjoern Landmann, FluiDyna

www.fluidyna.de

Solver speedup of 7x for 2 CPU + 4 GPU

- 36M Cells (mixed type)
- GAMG on CPU
- AMGPCG on GPU

DrivAer: Joint Car Body Shape by BMW and Audi

http://www.aer.mw.tum.de/en/research-groups/automotive/drivaer

Mesh Size - CPUs	9M - 2 CPU	18M - 2 CPU	36M - 2 CPU
GPUs	+1 GPU	+2 GPUs	+4 GPUs
Culises	2.5x	4.2x	6.9x
OpenFOAM	1.36x	1.52x	1.67x

ANSYS Fluent Investigation of DrivAer

2012

Automotive Simulation World Congress

http://www.aer.mw.tum.de

Courtesy by TU Munich, Inst. of Aerodynamics

Source: ANSYS Automotive Simulation World Congress, 30 Oct 2012 - Detroit, MI

"Overview of Turbulence Modeling"

By Dr. Paul Galpin, ANSYS, Inc.

Available ANSYS models

	Mesh 1	Mesh 2	Mesh 2 Full Domain
Elements	17,493,930	56,568,437	113,136,874
Nodes	6,778,624	18,992,636	37,901,816
Max. Aspect Ratio	30,092.5	27,493.5	27,493.5
Min. Grid Angle [degree]	12.8513	8.9184	8.9184
AVg. Y* (Avg. over car-surface)	0.958305	0.968906	0.952016

Particle-Based CFD for GPUs

Particle-Based Commercial CFD Software Growing

ISV	Software	Application	Method	GPU Status
EXE FLUID NEXT LIMIT TECHNOLOGIES Autodesk	PowerFLOW LBultra XFlow Project Falcon	Aerodynamics Aerodynamics Aerodynamics Aerodynamics	LBM LBM LBM LBM	Evaluation Available v2.0 Evaluation Evaluation
Prometech COFO	Particleworks BARRACUDA EDEM	Multiphase/FS Multiphase/FS Discrete phase	MPS (~SPH) MP-PIC DEM	Available v3.5 In development In development
CD-adapco	ANSYS Fluent–DDPM STAR-CCM+	Multiphase/FS Multiphase/FS	DEM DEM	In development Evaluation
	AFEA ESI LSTC Altair	High impact High impact High impact High impact	SPH SPH, ALE SPH, ALE SPH, ALE	Available v2.0 In development Evaluation Evaluation
7410011				

FluiDyna Lattice Boltzmann Solver ultraFluidX

http://www.fluidyna.com/content/ultrafluidx

from TU Munich CFD solver using

Spin-Off in 2006

Lattice Boltzmann method (LBM)

Demonstrated 25x speedup single GPU

Multi-GPU ready

Contact FluiDyna for license details

TiTech Aoki Lab LBM Solution of External Flows

www.sim.gsic.titech.ac.jp

Aoki CFD solver using Lattice Boltzmann method (LBM) with Large Eddy Simulation (LES)

Summary: GPU Suitability and Progress of CFD

- NVIDIA observes strong CFD community interest in GPU acceleration
 - New technologies in 2016: Pascal, NVLink, more CPU platform choices
 - NVIDIA business and engineering collaborations in many CFD projects
 - Investments in OpenACC: PGI release of 15.3; Continued Cray collaborations
 - **GPU progress for several CFD applications we examined a few of these**
 - NVIDIA AmgX linear solver library for iterative implicit solvers
 - OpenACC for legacy Fortran-based CFD
 - Novel use of DSLs, templates, Thrust, source-to-source translation

Check for updates on continued collaboration with NASA (and SGI)

- Further developments for FUN3D undergoing review at NASA LaRC
- Collaborations with NASA GSFC ongoing with climate model and other

Thank you and Questions?

Stan Posey; sposey@nvidia.com; NVIDIA, Santa Clara, CA, USA