CM30173/CM50210 Self assessment

Purpose

To help you to evaluate whether you are prepared for the mathematical content of the course.

A user's guide

1. Spend as long as you want and consult as many resources as you wish!
2. Fill in the self evaluation at the end.
3. Hand in: your solutions including working, and self evaluation on Tuesday 3rd in the first lecture.
4. Once returned: consider feedback, your self evaluation, list of resources used and time taken together in order to assess:

- Whether you are prepared for the maths in the course
- Whether you need to spend extra time on the mathematical parts of the course
- What resources worked best for you

5. Make an appointment during office hours to discuss the outcome if you wish.

Set notation

1. Write out the members of the set $\{0,1\}^{3}$
2. Describe in one sentence the members of the set

$$
\bigcup_{i=m+1}^{\infty}\{0,1\}^{i}
$$

for some fixed $m \in \mathbb{N}$.
3. What is the cardinality of the following sets?
(a) The set of all strings of length n of symbols 0 and 1
(b) The power set 2^{A} of A
(c) $\prod_{1 \leq i \leq n} A_{i}$ in terms of $\left|A_{1}\right|,\left|A_{2}\right|, \ldots,\left|A_{n}\right|$

Numbers

1. Let $a=1001$ and $b=1100$ be binary numbers, give the following in hexadecimal: $a, b, a \oplus b$
2. Give each hexadecimal number in binary: A, D, F
3. What are the defining properties of a prime number?
4. Find the prime decomposition of 5184 ; why is this job harder for the number 4819 ?
5. State the Fundamental Theorem of Arithmetic.
6. How many numbers $0 \leq n<15$ are relatively prime to 15 ? Can you work this out without listing them?
7. Find $\operatorname{gcd}(10,15)$ and $\operatorname{lcm}(10,15)$.
8. Calculate the following:

$$
\begin{array}{lll}
(10-3) \bmod 5, & (-123) \bmod 5, & 2^{4} \bmod 5, \\
2^{17} \bmod 5, & \left(-123 \times 2^{17}\right) \bmod 5, & 2^{-1} \bmod 5
\end{array}
$$

9. Find some $x \bmod 15$ such that

$$
\begin{array}{lr}
x \equiv 2 & (\bmod 3) \\
x \equiv 3 & (\bmod 5)
\end{array}
$$

10. Why you can't find an $x \bmod 18$ such that

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 3) \\
x \equiv 3 & (\bmod 6)
\end{array}
$$

Structures

First, a reminder of some definitions which you should have seen before:

Definition (Group).

A group (G, \circ) is a set G and a binary operation \circ on G such that:

- (Associative) $\forall a, b, c \in G, a \circ(b \circ c)=(a \circ b) \circ c$
- (Identity) $\exists e \in G \forall a \in G, a \circ e=e \circ a=a$ and we call e the identity.
- (Inverses) $\forall a \in G \exists b \in G, a \circ b=b \circ a=e$ and we call b the inverse to a.

A group is Abelian if $\forall a, b \in G, a \circ b=b \circ a$.

Definition (Ring).

A ring $(R,+, \times)$ is set R with two binary operations (arbitarily denoted),$+ \times$ on R such that:

- $(R,+)$ is an Abelian group with identity 0 .
- The operation \times is associative: $a \times(b \times c)=(a \times b) \times c$ for all $a, b, c \in R$.
- There is a multiplicative identity $1(1 \neq 0)$ such that $a \times 1=1 \times a=a$ for all $a \in R$.
- The operation \times distributes over $+: a \times(b+c)=(a \times b)+(a \times c)$ and $(b+c) \times a=$ $(b \times a)+(c \times a)$ for all $a, b, c \in R$
R is a commutative ring if $a \times b=b \times a$ for all $a, b \in R$.

Definition (Field).
A field is a commutative ring in which all non-zero elements have multiplicative inverses.

1. Which of the following are groups? Explain your answer.

$$
(\mathbb{N},+), \quad(\mathbb{Z},+), \quad(\mathbb{Q},+), \quad(\mathbb{Z}, \times), \quad(\mathbb{Q}, \times), \quad(\mathbb{R}, \times)
$$

2. Which of the following are rings? fields? Explain your answer.

$$
(\mathbb{N},+, \times), \quad(\mathbb{Z},+, \times), \quad(\mathbb{Q},+, \times), \quad(\mathbb{R},+, \times)
$$

3. Give an example of a non-Abelian group.
4. Let (G, \circ) be a group. Show that

- If $a \circ b=a \circ c$ then $b=c$
- If $b \circ a=c \circ a$ then $b=c$

5. Show that in any commutative ring, $0 \times a=0=a \times 0$
6. Show that in any field, if $a \times b=0$ then at least one of a and b is zero.
7. Let \mathbb{Z}_{n} be the integers modulo $n \in \mathbb{N}$. When are the following statements true:
(a) $\left(\mathbb{Z}_{n},+\right)$ is a group
(b) $\left(\mathbb{Z}_{n}, \times\right)$ is a group
(c) $\left(\mathbb{Z}_{n},+, \times\right)$ is a ring
(d) $\left(\mathbb{Z}_{n},+, \times\right)$ is a field

Functions

1. Give concise definitions of injective function, surjective function and bijective function.
2. Give a binary operation such that the set of bijective functions on some set A is a group. Explain.

Computability

1. Let ϵ, c be arbitrary constants such that $0<\epsilon<1<c$. Place the following in increasing order of their asymptotic growth rates:

$$
c^{n}, \quad \ln \ln n, \quad n^{c}, \quad c^{c^{n}}, \quad n^{\ln n}, \quad 1, \quad \exp (\sqrt{\ln n \ln \ln n}), \quad n^{n}, \quad \ln n, \quad n^{\epsilon}
$$

2. How many multiplication operations are required to calculate 2^{19} using the square-andmultiply algorithm?
3. What is meant by the term "computationally infeasible"?

Self evaluation and feedback

Self evaluation:

- Estimated total time to complete:
- Proportion of time consulting resources:
- Resources used (including books, people, notes, websites etc.):
- How familiar to you was the content and notation?
- How difficult or easy did you find the questions?
- Were any ideas gleaned from resources particularly helpful? How did they help?
- If you decided not to answer some or all questions consider why that was:
- Do you need to look at any of the methods or ideas again?

Feedback from lecturer:

