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The sequencing of the human genome and the entire genomes
of many model organisms has resulted in the identification of
many genes. Many large-scale experiments for generating gene
disruptions and analyzing the phenotypes are underway to
ascertain gene function. A future challenge will be to determine
interaction and regulation of all the genes of an organism.
Recent advances in functional genomic technology have begun
to shine light on such gene network problems at both
transcriptomic and proteomic levels. Functional genomics will
not only elucidate what the genes do, but will also help
determine when, where and how they are expressed as an
orchestrated system. In this review, we discuss the functional
genomics approaches to extract knowledge about transcription
regulatory mechanisms from combinations of sequence data,
microarray data and ChIP data. We focus in particular on the
budding yeast Saccharomyces cerevisiae.
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Abbreviations
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Introduction 
The sequencing of the human genome and the entire
genomes of many model organisms has resulted in the
identification of most protein-coding genes. The functional
genomics techniques for mapping transcription regulatory
networks have evolved on the basis of advances in experi-
mental approaches and the kinds of data generated.
Various high-throughput expression techniques, such as
serial analysis of gene expression (SAGE) and microarrays,
have been developed that exploit the huge body of
sequence data and provide rapid, parallel surveys of gene-
expression patterns for hundreds of thousands of genes in
a single assay. Several computational algorithms have been
developed and applied to uncover co-regulated genes or
causal relationships from the large-scale gene expression
data. As transcription is mainly controlled and regulated by
the binding of transcription factors (TFs) to the promoter
DNA sequence, significant progress has also been made in
identifying these cis-regulatory elements in the promoters,
providing more insight to gene function and regulation
pathways [1]. Recently, large-scale chromatin immuno-
precipitation (ChIP), which allows genome-wide location

analysis of TF-binding in vivo, has offered an additional
powerful tool in dissecting global regulatory networks. In
this review, we discuss the functional genomics approaches
to extract knowledge about transcription regulatory mech-
anisms from combinations of sequence data, microarray
data and ChIP data. We focus on eukaryotes. In particular,
much emphasis is placed on the budding yeast,
Saccharomyces cerevisiae. With its small genome (predicted
to encode roughly 6200 proteins) and tractable genetics,
this yeast has played a prominent role in the development
of many methodologies for functional genomics [2]. 

Clustering expression profiles to identify
co-regulated genes
Although mRNA is not the ultimate product of a gene,
transcription is the first step in gene regulation and 
information about the transcript levels is needed in order
to understand gene regulatory networks. To understand
how a genetic system is regulated, one has to perturb the
system and watch how the system responses. After pertur-
bation, the simplest question one can ask is: which genes
have been upregulated (or downregulated)? If the pertur-
bation consists of a TF knockout or overexpression, one
could in principle identify its target genes (activated or
repressed) by sorting through expression levels (relative to
the control). The difficulty lies in the fact that many of
these targets may not be the direct ones; they may contain
secondary targets unless the mRNA samples were collected
fast enough or translation was blocked. However, identifying
patterns of gene expression and grouping genes into
expression classes may provide much greater insight into
their biological function, because many genes belonging to
the same complex (such as the ribosome) or to the same
regulatory pathway tend to have similar or correlated
expression profiles. For instance, if two or more genes have
correlated (or anticorrelated) expression profiles in different
experiments or at different time points, these genes 
may be co-regulated and, possibly, functionally related.
Different metrics, like Euclidean distance, correlation
coefficient, ranked correlation coefficient and mutual-
information-based measure have been used to quantify the
similarity (or distance) between the expression patterns.
Once a similarity metric has been chosen, the expression
matrix can be analyzed in either an unsupervised or 
supervised manner [3,4] Unlike unsupervised analysis, the
supervised approach groups genes and is guided by previous
knowledge of which genes belong together. 

Several multivariate techniques have been used for 
unsupervised analysis of gene-expression data, including
hierarchical clustering [5], k-means [6] and self-organizing
maps [7,8]. DeRisi et al. [9] used a cDNA array containing
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a complete set of yeast genes to study the time course of
the diauxic shift. They selected small groups of genes with
similar expression profiles and showed that these genes are
functionally related and contain relevant TF-binding sites
upstream of their open reading frames (ORFs). Later,
more expression studies of yeast and other organisms
under various conditions were carried out, including cell
cycle [10,11] and sporulation [12]. The expression profiles
of cell-cycle-dependent genes are periodic, and Fourier
analysis has been successfully applied to discover these
genes [11]. Clustering has been applied and groups of
functionally related and co-regulated genes have been
revealed. Given the numerous clustering algorithms, 
selection of an appropriate algorithm for exploration of the
data at hand is a non-trivial task. Recently, Chen et al. [13]
introduced algorithm-independent measures to evaluate
the quality of clustering results from different algorithms.

Supervised analysis constructs classifiers, such as linear
discriminants, decision trees or support vector machines
(SVMs) [14], which assign predefined classes to a given
expression profile. These classifiers are trained on a subset
of data with a previous given classification and tested on
another subset with known classification. They are used to
assign an unknown member into a known group.

Some genes may only be co-regulated within a subset of
experiments or during a subset of time intervals. These
gene clusters may only be discovered by so-called two-way
clustering methods [15–17].

Supervised or unsupervised approaches are, however, only
the initial steps in gene expression analysis. To understand
why a cluster of genes share similar expression patterns
and how different clusters are related, it is necessary to further
study transcription factors that regulate these genes
through binding with their promoter cis-regulatory elements.

Identification of cis-regulatory elements in
promoters
Finding cis-regulatory elements in promoters has been a
long-standing problem in computational molecular biology
[18]. Traditionally, one starts by collecting known
upstream sequences and employing motif-discovering
algorithms (either based on over-represented words or on
alignment) to identify the common cis-elements. One can
then use the consensus or the position weight matrix
(PWM) characterizing the motif to search novel promoter
sequences for additional cis-elements. Clustering of
microarray expression has provided a high-throughput
technology for identifying co-regulated genes. The promoter
sequences of each gene in a cluster can be immediately fed
to a motif discovery algorithm. Motifs that are common to
a set of apparently co-expressed genes are plausible 
candidates for binding sites implicated in transcriptional
regulation. Van Helden et al. [19] and Brazma et al. [20]
looked at groups of co-regulated genes to find over-
represented oligonucleotide sequences. Both groups

detected new candidate regulatory sites, as well as sites
that had already been characterized. Zhang [21] and
Wolfsberg et al. [22] developed a statistical technique to
predict short oligomers that may be involved in the expres-
sion of groups of co-regulated genes. Their strategy looked
for pentamers and hexamers that are over-represented
among the upstream regions of genes whose expression
peaks at a particular phase of the cell cycle. Both Spellman
et al. [11] and Tavazoie et al. [6] used their modified 
versions of the Gibbs sampler to look for longer motifs in
the yeast cell-cycle clusters. Holmes and Bruno [23] 
suggested that the two stages — clustering of expression
profiles followed by Gibbs sampling of sequences — may
be combined and viewed as operating on the marginal 
distributions of a joint probabilistic model for both
sequence and expression data. In this case, the presence or
absence of a motif will have an influence on which cluster
a gene is assigned to. The hope was that using an integrated
approach and a better-formulated optimization problem
will result in significantly improved discriminative power
for regulatory signal identification. When positional 
information is also incorporated, TF-site prediction may
be further improved [24].

Given that not all co-regulated gene promoters in a cluster
share a common motif (because they may not all be the
direct targets of the same TF) and that the same cis-
element can be functional in genes of different clusters
(the same TF can act at different times or under different
conditions), there have been other attempts to locate the
cis-elements. There are a few approaches to mining for
regulatory cis-elements without clustering expression 
profiles. Using the cooperative property of certain cis-
elements, Wagner [25] was able to detect some clustered
TF sites in whole eukaryotic genomes using sequence
information alone. Bussemaker et al. [26•] used an elegant
regression model, in which upstream motifs contribute
additively to the log-expression level of a gene, to identify
statistically significant promoter motifs by a χ2-fit. In
another algorithm [27•], cis-TF tries to match a TF to its
binding sites by correlating the TF expression profile with
the binding-site profile, which is defined by the composite
expression patterns of all genes containing the site, even
when those genes are not mutually correlated. As the
method focuses on binding sites rather than genes, these
target genes do not have to be co-regulated.

Most of the motif-searching algorithms identify individual
protein-binding-site patterns in DNA sequences. But it is
known that transcriptional activation in eukaryotic organisms
normally requires combinatorial interactions of multiple
transcription factors. A few methods [28,29] have been
designed for discovery of binding-site patterns for cooper-
atively acting factors. Recently, GuhaThakurta and Stormo
[30] introduced an algorithm, Co-Bind (for co-perative
binding), which utilizes a Gibbs sampling strategy to model
the co-operativity between two transcription factors in a
training set discriminated against the genome background.
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With the genome-wide expression data, synergistic motif
combinations that can produce more correlated expression
profiles have been screened [31•• ]. To get a global view of
the connections between regulators of the transcriptional
networks within the cell in different conditions, motif 
synergy maps were generated that displayed the motif
associations discovered in the study.

In addition to in silico identification of putative cis-regulatory
elements, genome-wide mapping of TF binding sites
in vivo has recently become possible. Working in yeast, two
groups have pioneered the so-called ‘ChIP–chip’ method
that can combine chromatin immunoprecipitation (ChIP)
and microarray (DNA chip) technology to efficiently 
identify all the crosslinked regions in chromatin DNA
bound by a given TF. Using this approach, Ren et al. [32•]
identified the sites bound by Gal4 and Ste1, and Iyer et al.
[33•] analyzed the genomic binding sites of the transcription
factors SBF and MBF. Similar technology has also recently
been applied to mammalian systems [34,35].

Mapping regulatory networks
Although substantial work has been done on clustering
algorithms and motif-discovery algorithms, a more ambitious
goal for functional genomics is to delineate the gene 
regulation networks. Construction of gene network 
architectures from expression profiles is often referred to
as ‘reverse engineering’. One of the first large-scale
attempts at reverse engineering was done with real time
(RT)-PCR [36]. Later, a random Boolean network model
[37] and continuous network models [38] were developed
to infer network architecture. As the possible number of
networks grows exponentially with the number of genes, it
is not possible to derive a unique network with only limited
data. To deal with the inherent complexity of network
inference, Friedman [39] examined local statistical properties
of network components using Bayesian network approaches.
With a large set of gene knockout expression data, they were
able to extract a finer structure of interactions between
genes, such as causality, mediation, activation and inhibition
and uncovered some robust regulatory pathways [40].

Even though there has been much progress in developing
network models, it is important to note that the current
experimental data from which networks are inferred is
extremely noisy. Moreover, mRNA expression data alone
only gives a partial picture that does not include key 
post-transcriptional events. Additionally, the amount of
samples, even in the largest experiments in the foreseeable
future, does not provide enough information to construct a
full, detailed model with high statistical confidence.
Compounded by these issues, there is a great need to 
integrate diverse data types and construct tools that will
assimilate them into biological models [41]. 

More recently, Simon et al. [42••] have used genome-wide
location (ChIP–chip) analysis to determine how the yeast
cell-cycle gene-expression program is regulated by each of

the nine major transcriptional activators. By combining all
(sequence, expression and TF-binding) data, they found
that the cell-cycle transcriptional activators that function
during one stage of the cell cycle regulate those that 
function during the next stage (Figure 1). This study has
led to a more coherent picture of the transcriptional 
regulatory network in yeast mitotic cell-cycle progression.

Taking advantage of genome-wide location and gene
expression data, Hartemink et al. [43] developed a method
to automatically discover regulatory network models.
Their Bayesian network models are led into a model
induction process that capitalizes on the location data to
generate models which would not have resulted from using
gene expression data in isolation.

Conclusions
As the computational approaches to analyzing functional
genomics data are further developed and refined, extracting
and integrating orthogonal information will become
increasingly important. A combination of sequence data,
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Figure 1

Mapping of transcriptional regulatory network in yeast cell cycle. The
relationship between TFs (light green) and cyclin genes (purple), as
collated from experimental approaches (black arrows) and functional
genomics approaches with genome-wide binding (red arrows), are
shown. The red arrows and black arrows represent binding of
transcriptional activators to the promoter of another regulatory factor.
Purple arrows indicate post-transcriptional regulation. The data from
genome-wide binding analysis helped establish the sequence in which
TFs regulate activators acting in the next cell cycle stage. The figure is
adapted from [42•• ].
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global expression profiling and binding-site mapping has
already produced a more complete picture of the genetic
circuitry that is responsible for transcription regulation.
Different types of large-scale data can be interrelated to
reveal potentially important but not apparent relation-
ships, such as between gene expression and the position of
genes on chromosomes [44], or between gene expression
and the subcellular localization of proteins [45], or
between gene expression and the protein interaction [46].
Ideker et al. [47] were able to build, test and refine a model
of the galactose utilization pathway in S. cerevisiae by 
integrating both genomic and proteomic approaches. The
systematic combination of diverse data types along with
new functional genomics approaches will provide a 
rigorous platform to map transcription regulatory networks
more efficiently. But to efficiently dissect large amount of
functional genomics data for transcription regulatory 
network studies, more promoter prediction tools [48], more
promoter extraction tools [49] and more specialized 
promoter databases, such as SCPD (the promoter database
of S. cerevisiae) [50], are clearly going to be needed.

Update
Recently, Davidson et al. [51] have delineated a gene 
regulatory network that controls the specification of endo-
derm and mesoderm in the sea urchin embryo. Large-scale
perturbation analyses, in combination with computational
methodologies, genomic data, cis-regulatory analysis and
molecular embryology, were used to generate their network. 
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