Math 102 Homework Assignment 8. Due Thursday March 13 by 4pm

1. Show that the set of 2×3 matrices of the form $\left[\begin{array}{lll}a & b & 0 \\ c & 0 & d\end{array}\right]$ forms a subspace of the vector space of all 2×3 matrices.
2. Let V be the set of all polynomials $a x^{3}+b x^{2}+c x+d$ that satisfy the condition $a+b+c+d=0$. Determine whether or not V is a subspace of P_{3}.
3. Let

$$
V=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
4
\end{array}\right],\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right]\right\}
$$

Determine whether V is linearly dependent or linearly independent.
4. Find all values of k so that the set of vectors $\left\{\left[\begin{array}{l}0 \\ 1 \\ k\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-k \\ 0 \\ 1\end{array}\right]\right\}$ spans \mathbb{R}^{3}.
5. Determine a basis for and the dimension of the solution space of the following homogeneous system:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{5} & =0 \\
2 x_{1}-3 x_{2}-x_{4} & =0 \\
3 x_{1}-2 x_{2}+4 x_{3}-x_{4}+x_{5} & =0
\end{aligned}
$$

6. Let $V=\operatorname{span}\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}5 & 4 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right]\right\}$. Find a basis for V.
