Math 102 Homework Assignment 8. Due Thursday March 13 by 4pm

1. Show that the set of 2×3 matrices of the form $\begin{bmatrix} a & b & 0 \\ c & 0 & d \end{bmatrix}$ forms a subspace of the vector space of all 2×3 matrices.

2. Let V be the set of all polynomials $ax^3 + bx^2 + cx + d$ that satisfy the condition a + b + c + d = 0. Determine whether or not V is a subspace of P_3 .

3. Let

(1		[-1]		5	
$V = \langle$	2	,	0	,	-1	}
l	3		4		2)

Determine whether V is linearly dependent or linearly independent.

4.	Find all values of k so that the set of vectors \boldsymbol{k}	{ 	$\begin{bmatrix} 0 \\ 1 \\ k \end{bmatrix}$,	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$,	$\begin{bmatrix} -k \\ 0 \\ 1 \end{bmatrix}$		>
span	${ m s} \ { m \mathbb{R}}^3.$			1	L _	1	L	, r	

5. Determine a basis for and the dimension of the solution space of the following homogeneous system:

$$x_1 + x_2 + x_3 + x_5 = 0$$

$$2x_1 - 3x_2 - x_4 = 0$$

$$3x_1 - 2x_2 + 4x_3 - x_4 + x_5 = 0$$

6. Let $V = \operatorname{span}\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 5 & 4 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \right\}$. Find a basis for V.