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Abstract

Australia is currently a world leader in the design and construction of high-speed
vessels. In today’s society, time is a precious commodity, driving the need for shorter
voyage times, faster freight delivery times, and quicker deployment of troops in times
of war. Indeed, the primary contractual obligation placed upon the builder of high-
speed vessels is the vessel’s achievable speed upon completion. Therefore, paramount
in the design of these vessels is the accurate prediction of the vessel’s resistance
characteristics. Prediction of these characteristics early in the design stage can be
critical in installing the correct powering required to achieve the contract speed.
There are several methods by which a design company may estimate the total
resistance of their hullform; computation using linear theory or non-linear theory,
statistical extrapolation from existing model data of models possessing similar form
and, finally, ship-model experiments. Traditionally, though expensive and time con-
suming, ship-model tank testing has provided the most accurate method for pre-
dicting the resistance of the designed hullform. Due to the expense of experimental
testing, and the relative inaccuracy of the simplified linear theory, extensive time
and resources have been invested in developing fully non-linear computer codes for
prediction of resistance. Currently, the execution time of these non-linear codes is
far too long, especially for design companies competing in a global market. The
work presented here therefore covers research undertaken to improve the accuracy
of predictions of resistance for high-speed displacement transom-stern vessels using

linear theory.
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v

A common characteristic of high-speed vessels is that of a transom stern, a
feature which provides additional complexity to hydrodynamic analysis. A transom
stern, due to its truncated form, introduces a hollow into the wake aft of the vessel.
It is commonly observed that the transom hollow deepens and lengthens as the
vessel’s speed increases until the transom itself is fully ventilated or “running dry”.
A common approach in the numerical prediction of wave-resistance for transom-
stern vessels is to discretize the hollow as a geometrically-smooth addition to the
vessel. Therefore, of great importance in accurate prediction of wave-resistance is
the hydrodynamics of, and in particular the length and depth of the hollow formed
behind, the transom stern. However, little is known of the relationship between
speed and hollow dimensions, nor of the effect of other potential influences such as
vessel geometry.

To improve the correlation between theoretical predictions and experimental
results, an investigation of the hydrodynamics of transom sterns was therefore un-
dertaken. A systematic series of transom-stern models was tank tested at various
drafts and speeds in order to determine experimentally the length and depth of the
transom hollow as a function of vessel speed, draft and beam. The results of these
experiments are presented in the form of hollow profiles measured on the centre-
line of the models. Analysis of these results has provided insight into the driving
forces influencing the length and depth of the hollow formation. The results of this
experimental investigation were also utilised to create algorithms for the prediction
of the length and depth of the transom hollow. The developed algorithms were
then incorporated for the discretization of the transom hollow in prediction of re-
sistance using the Michell wave-resistance theory. Results indicated that significant
reductions in RMS error in the correlation between theory and experiment could be
achieved through utilisation of the hollow-prediction algoriths.

The research presented also encompasses an expansion of the work by Doctors

and Day (1997) into form factors, whereby the traditional Michell wave-resistance



theory, published in 1898, is improved upon through the application of correction
factors determined from statistical analysis of published experimental data. The
form factors are formulated using the major geometric parameters of the models
used in a least-squares regression analysis. The method was applied to a large range
of published resistance data for high-speed displacement vessels possessing transom
sterns. The hullform characteristics, geometric parameters, testing procedures and
experimental results of the thirteen model series utilised in the regression analysis
are presented in detail. Considerable improvement in correlation between theory
and experiment was achieved by incorporating the calculated form factors into the
total resistance formulation.

Form factors were also formulated specific to each of the individual model series
used in the overall regression analysis. Although limited in their range of applica-
bility, the series-specific form factors provide vastly improved correlation between
theory and experiment and, hence, improved resistance prediction for vessels of form

similar to the particular model series.
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Roman Variables

Ar Transverse projected superstructure cross-sectional area
By, Waterline beam of a vessel

Cy Correlation allowance

Cp  Block coefficient

Cr  Frictional resistance coefficient
Cy Midship-section area coefficient
Cp  Prismatic coefficient

Cr  Residuary resistance coefficient
Cr  Total resistance coefficient

Cy  Volumetric coefficient

Cyp Vertical prismatic coefficient

Cx  Maximum-section area coeflicient
Dy Hollow depth

fr Frictional resistance form factor

F,, Beam Froude number
F,, Length Froude number
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NOMENCLATURE xvii

F,

ny  Draft Froude number

F,

npr Froude number based on the diameter of the wave-probe

fw  Wave resistance form factor
g Acceleration due to gravity
qgf Grams-force

Ly Hollow length

Ly  Waterline length of a vessel
Pp  Brake power

Pr  Effective power

R4 Correlation resistance

Rsx Aerodynamic resistance

Rr  Frictional resistance

Ry Hydrostatic resistance

n, Reynolds number based on length
nr Reynolds number based on draft

Ry Total resistance
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S Wetted surface area of a vessel’s hull
T Draft of a vessel
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U Carriage speed
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Vr

w

True wind speed

Vessel weight

Greek Variables

Q Angle of true wind direction relative to vessel
0z Heave

A Vessel displacement

¢ Measured water elevation

n Coefficient of overall propulsive efficiency
v Kinematic viscosity

13 Wave amplitude

p Water density

Pair  Alr density

Symbols

© Copyright

0 Diameter

\V/ Displaced volume

00 Midships

® Registered trademark

Abbreviations

3-D  Three dimensional

AC

Alternating current
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AMC Australian Maritime College

AP  Aft Perpendicular

BL  Baseline

CAD Computer-aided drafting

CFD Computational Fluid Dynamics

CL  Centreline

DWL Design waterline

fwd  Forward

FP  Forward Perpendicular

i,e.  That is

ITTC International Towing Tank Committee
LDV Laser doppler velocimetry

LVDT Linear variable displacement transducer
NURBS Non-uniform rational B-splines

PC  Personal Computer

RMS Root-mean-square

SHC Ship Hydrodynamics Centre

SI Systeme Internationale des Unités

(International System of Units)

VMS Virtual Memory System

XX



Glossary of Terms

Aft: Behind or negative longitudinally; nautical term meaning opposite of forward.

Baseline: The origin for vertical measurements in relation to a vessel, typically

taken at the lowest part of the hull.

Beam: The breadth of vessel measured either at the waterline or between extrem-

ities of the moulded hull.

Bow: The foremost part of a vessel’s hull.

Catamaran: A vessel possessing two hulls joined by a bridging structure.
Draft: The vertical distance from the waterline to the lowest point of the hull.

Geosim: Geometrically similar models, possessing hull shapes of exactly the same

form but of differing scale (term coined by Prof. Telfer).

Greenwater: Water taken onboard due to large bow waves or from breaking waves

in heavy seas.
Midships: The longitudinal midpoint on the waterline length of a vessel.

Rooster Tail: The name given to the point of closure of the flow around the

hollow behind a transom-stern, due to the associated uplifting spray pattern.
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Static: Used to describe the draft or waterline associated with the vessel when

stationary.
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