Variable	Description
C_{1}	Consumption in period 1
C_{2}	Consumption in period 2
l_{i}	Labour supply in period i
$1-l_{i}$	Free time in period i
w_{i}	wage in period i

A person living in two periods has the following budget constraint

$$
\begin{equation*}
C_{1}+C_{2}=w_{1} l_{1}+w_{1}\left(1+l_{1}\right) l_{2} \tag{1}
\end{equation*}
$$

in a world, where on-job experience leads to wage increases according to rule $w_{2}=\left(1+l_{1}\right) w_{1}$ and the total available time is 1.

I claim that (1) can be rewritten as

$$
3 w_{1}=C_{1}+C_{2}+2 w_{1}\left(1-l_{1}\right)+w_{1}\left(1+l_{1}\right)\left(1-l_{2}\right),
$$

where $3 w_{1}$ is the maximum life time income of the person (exogenous), $2 w_{1}=$ $w_{1}+w_{1}$ is the price of time in period 1 , based on

1. lost income from period 1 , which equals $\left(1-l_{1}\right) w_{1}$
2. the loss of income the person would suffer due to working only l_{1} if he worked full time in period 2. This loss is $2 w_{1}-w_{1}\left(1+l_{1}\right)=\left(1-l_{1}\right) w_{1}$.
and $w_{1}\left(1+l_{1}\right)$ is the wage in period 2 only, as there is no period 3 . Both prices are exogenous in their respective periods.

Proof:

$$
\begin{aligned}
3 w_{1} & =C_{1}+C_{2}+2 w_{1}\left(1-l_{1}\right)+w_{1}\left(1+l_{1}\right)\left(1-l_{2}\right) \\
0 & =C_{1}+C_{2}-2 w_{1} l_{1}+w_{1} l_{1}-w_{1} l_{2}-w_{1} l_{1} l_{2} \\
C_{1}+C_{2} & =w_{1} l_{1}+w_{1} l_{2}\left(1+l_{1}\right)
\end{aligned}
$$

For three periods the two equivalent (I've checked) equations are

$$
\begin{gathered}
C_{1}+C_{2}+C_{3}=w_{1} l_{1}+w_{1}\left(1+l_{1}\right) l_{2}+w_{1}\left(1+l_{1}\right)\left(1+l_{2}\right) l_{3} \\
7 w_{1}=\sum C_{i}+\left[4 w_{1}\right]\left(1-l_{1}\right)+\left[2 w_{1}\left(1+l_{1}\right)\right]\left(1-l_{2}\right)+\left[w_{1}\left(1+l_{1}\right)\left(1+l_{2}\right)\right]\left(1-l_{3}\right)
\end{gathered}
$$

