
An Overview of the Spring System

James G. Mitchell, Jonathan J. Gibbons, Graham Hamilton, Peter B. Kessler,
Yousef A. Khalidi, Panos Kougiouris, Peter W. Madany, Michael N. Nelson,

Michael L. Powell, and Sanjay R. Radia

Sun Microsystems Inc.
2550 Garcia Avenue, Mountain View Ca 94303.

Abstract

Spring is a highly modular, distributed, object-oriented
operating system. This paper describes the goals of the
Spring system and provides overviews of the Spring object
model, the security model, and the naming architecture.
Implementation details of the Spring microkernel, virtual
memory system, file system, and UNIX emulation are sup-
plied.

1 Introduction

What would you do if you were given a clean sheet on
which to design a new operating system? Would you make
the new OS look the same as some existing system or dif-
ferent?

If you choose to make it look like UNIX, for example,
then a better implementation had better be a primary goal.
Changing the system as seen by application programs
would, however, be a very bad thing to do, since you are
supposedly making it look the same as UNIX in order to
run existing software. In fact, if you take this route, you
will be strongly pressured to make the new, improved sys-
tem binary compatible with the existing one so that users
can run all their existing software. Any new functionality
that you would like to include would have to be done as a
strict addition to the system’s existing Application Pro-
gramming Interfaces (APIs).

If you choose to make the new system different than any
existing system, then you had better make it such an
improvement over them that programmers will be willing
to learn a new set of APIs to take advantage of its
improved functionality. Indeed, you will have to convince
other companies to adopt and support your new APIs so
that there will be sufficient future sales of systems with the

new APIs to warrant software development investments
by application developers.

Because the opportunity to begin afresh in OS design is
increasingly rare, the Spring project has chosen to be dif-
ferent and to develop the best technology we could. How-
ever, we decided that we would innovate only where we
could achieve large increases over existing systems and
that we would try to keep as many as possible of their
good features.

What are the biggest problems of existing systems? From
Sun’s point of view as a supplier of UNIX system technol-
ogy in our Solaris products, the major issues are:

• the cost of maintaining, evolving, and delivering the
system, including kernel and non-kernel code (e.g.,
window systems),

• a basis for security that is not particularly flexible, easy
to use or strongly secure,

• the difficulty of building distributed, multi-threaded
applications and services,

• the difficulty of supporting time-critical media (audio
and video), especially in a networked environment,

• the lack of a unified way of locating things by name
(e.g., lookup is done differently for files, devices,
users, etc.).

However, we wanted to keep a number of features that
have proven themselves in one or more systems; for exam-
ple,

• good performance on a wide variety of machines,
including multi-processor systems,

• memory protection, virtual memory, and mapped file
systems,

• access to existing systems via application compatibility
and network interoperability (e.g., standard protocols
and services),

• window systems and graphical user interfaces.

Sun’s belief in open systems means that we would like to
include extending the system by more than one vendor as
an important aspect of evolving it.

When we looked at these lists, we immediately decided
that the Spring system should have a strong and explicit
architecture: one that would pay attention to the interfaces
between software components, which is really how a sys-
tem’s structure is expressed. Our architectural goal for
Spring then became

• Spring’s components should be defined by strong
interfaces and it should be open, flexible and extensible

By a strong interface we mean one that specifies what
some software component does while saying very little
about how it is implemented

This way of stating our purpose led us to develop the idea
of an Interface Definition Language (IDL) [15] so that we
could define software interfaces without having to tie our-
selves to a single programming language, which would
have made the system less open. We also believed that the
best way to get many of the system properties we wanted
was to use an object-oriented approach.

The marriage of strong interfaces and object-orientation
has been a natural and powerful one. It helps achieve our
goals of openness, extensibility, easy distributed comput-
ing, and security. In particular, it has made the operation of
invoking an operation on an object one that is type safe,
secure (if desired), and uniform whether the object and its
client are collocated in a single address space or machine
or are remote from one another.

We have used a microkernel approach in concert with IDL
interfaces. The Spring Nucleus (part of the microkernel)
directly supports secure objects with high speed object
invocation between address spaces (and by a system
extension, between networked machines). Almost all of
the system is implemented as a suite of object managers
(e.g., the file system, which provides file objects) running
in non-kernel mode, often in separate address spaces, to
protect themselves from applications (and from one
another). Consequently, it is as easy to add new system
functionality as it is to write an application in Spring, and
all such functionality is inherently part of a distributed
system.

Object managers are themselves objects: for example, a
file system is an object manager that supports an operation
for opening files by name. The file objects that it returns
from open operations are generally implemented as part of
the same object manager because it is convenient and nat-
ural to do so. Because of the similarity of an object man-
ager and the traditional notion of a server (e.g., a file

server), we use the two terms interchangeably in this
paper.

The remainder of this paper will discuss

• IDL,
• the model and implementation of objects in Spring,
• the overall structure of the Spring system,
• the Spring Nucleus,
• the implementations of distributed object invocation,

security, virtual memory, file systems, UNIX compati-
bility, and unified naming.

We will finish by drawing some conclusions from our
experience designing and implementing the system.

2 Interface Definition Language (IDL)

The Interface Definition Language developed by the
Spring project is substantially the same as the IDL that has
been adopted by the Object Management Group as a stan-
dard for defining distributed, object-oriented software
components. As such, IDL “compilers” are or have been
implemented by a number of companies.

What does an IDL compiler do? After all, interfaces are
not supposed to be implementations, so what is there to
compile? Typically, an IDL compiler is used to produce
three pieces of source code in some chosen target imple-
mentation language, e.g., C, C++, Smalltalk, etc.:

1. A language specific form of the IDL interface: For C
and C++ this is a header file with C or C++ definitions
for whatever methods, constants, types, etc. were
defined in the IDL interface. We will give an example
below.

2. Client side stub code: Code meant to be dynamically
linked into a client’s program to access an object that is
implemented in another address space or on another
machine.

3. Server side stub code: Code to be linked into an object
manager to translate incoming remote object invoca-
tions into the run-time environment of the object’s
implementation.

These three outputs from an IDL compiler enable clients
and implementations in a particular language, e.g., C++, to
treat IDL-defined objects as if they were just objects in
C++. Thus, a programmer writing in C++ would use an
IDL-to-C++ compiler to get C++ header files and stub
code to define objects as if they were implemented in C++.
At the same time, the object’s implementation might be
written in C and would, therefore, have used an IDL-to-C
compiler to generate the server side stub code to transform

incoming calls into corresponding C procedure invoca-
tions on the C “objects” corresponding to the IDL objects.

2.1 An example
To give the flavor of IDL, Figure 1 shows an example of
IDL use to define the Spring IO interface. For the purposes
of this overview, details have been elided, but the example
is derived from an actual use of IDL.

The interface defines objects of type IO. In this example,
any IO object has two operations defined on it, read and
write. The read operation takes a parameter, size, of type
long, and returns an object of type raw_data. The write
method returns nothing (void) and takes a single argument,
data, whose type is raw_data.

As noted above, instead of returning normally, a method
may raise one of a number of defined exceptions.

A complete description of IDL is given in [15].

3 Objects in Spring

Although all Spring interfaces are defined in IDL, IDL
says nothing about how operations on an object are imple-
mented, or even how an operation request should be con-
veyed to an object.

The users of an object merely invoke operations defined in
its interface. How and where the operation is actually per-
formed is the responsibility of the object run-time and of
the object implementation. Sometimes the operation will
be performed in the same address space as the client,
sometimes in another address space on the same machine,
sometimes on another machine.

We will often use the phrase “invoke an object” as a short
form for “invoke an operation on an object”.

3.1 Server-based objects
Many objects in Spring are implemented in servers that
are in different address spaces from their clients. We pro-

interface io {
 raw_data read(in long size) raises (access_denied, alerted,
 failure, end_of_data)

 void write(in raw_data data) raises (access_denied, alerted,
 incomplete_write, failure, end_of_data)
};

FIGURE 1. IO Interface in IDL

vide special support for these kinds of objects by automat-
ically generating stubs (see Section 2) which take the
arguments for these calls and marshal them for transmis-
sion to the server and which unmarshal any results and
return these to the client application. These stubs use our
subcontract mechanism (see Section 3.3) to communicate
with the remote server.

Typically, server-based objects use the Spring doors com-
munication mechanism (see section 5.1) to communicate
between the client and the server. Most subcontracts opti-
mize the case when the client and the server happen to be
in the same address space by simply performing a local
call, rather than calling through the kernel.

3.2 Serverless objects
Spring also supports serverless objects, where the entire
state of the object is always in the client’s address space.
This implementation mechanism is suitable for light-
weight objects such as names or raw_data. When a server-
less object is passed between address spaces, the object’s
state is copied to the new address space. Thus passing a
serverless object is more like passing a struct, while pass-
ing a server-based object is more like passing a pointer to
its remote state.

client
application

IDL
interface client

stubs

subcontract

server
application

server
stubs

subcontract

FIGURE 2. A call on a server-based object

client
application

IDL
interface object

implementation

FIGURE 3. A call on a serverless object

3.3 Subcontract
Spring provides a flexible mechanism for plugging in dif-
ferent kinds of object runtime machinery. This mecha-
nism, known as subcontract, allows control over how
object invocation is implemented, over how object refer-
ences are transmitted between address spaces, how object
references are released, and similar object runtime opera-
tions [2].

For example, the widely used singleton subcontract pro-
vides simple access to objects in other address spaces.
When a client invokes a singleton object, the subcontract
implements the object invocation by transmitting the
request to the address space where the object’s implemen-
tation lives.

We have also implemented subcontracts that support repli-
cation. These subcontracts implement object invocation by
transmitting a request to one or more of a set of servers
that are conspiring to support a replicated object.

In addition we have used subcontract to implement a num-
ber of different object runtime mechanisms, including sup-
port for cheap objects, for caching, and for crash recovery.

4 Overall system structure

Spring is organized as a microkernel system. Running in
kernel mode are the nucleus, which manages processes
and inter-process communication, and the virtual memory
manager, which controls the memory management hard-
ware. The nucleus is entered by a trap mechanism. The
virtual memory manager responds to page faults but also
provides objects that interact with external pagers (see
Section 8.2) and, in this guise, looks like any other object
server.

network
proxy

caching
fs

unix

libue
csh

libue

machine
name server

dynamic linker
tty
server

Spring
X11 server

FIGURE 4. Major system components of a Spring node

Spring
file system

vm
manager

Kernel

process
server

nucleus

authentication
 manager TCP/UDP/IP

Application

All other system services, including naming, paging, net-
work IO, filesystems, keyboard management, etc., are
implemented as user-level servers. These servers provide
object-oriented interfaces to the resources they manage
and clients communicate with system servers by invoking
these objects.

Spring is inherently distributed. All the services and
objects available on one node are also available on other
nodes in the same distributed system.

5 The nucleus

The nucleus is Spring’s microkernel. It supports three
basic abstractions: domains, threads, and doors [1].

Domains are analogous to processes in Unix or to tasks in
Mach. They provide an address space for applications to
run in and act as a container for various kinds of applica-
tion resources such as threads and doors.

Threads execute within domains. Typically each Spring
domain is multi-threaded, with separate threads perform-
ing different parts of an application.

Doors support object-oriented calls between domains. A
door describes a particular entry point to a domain, repre-
sented by both a PC and a unique value nominated by the
domain. This unique value is typically used by the object
server to identify the state of the object; e.g., if the imple-
mentation is written in C++ it might be a pointer to a C++
object.

5.1 Doors
Doors are pieces of protected nucleus state. Each domain
has a table of the doors to which it has access. A domain
refers to doors using door identifiers, which are mapped
through the domain’s door table into actual doors. A given
door may be referenced by several different door identifi-
ers in several different domains.

Possession of a valid door gives the possessor the right to
send an invocation request to the given door.

A valid door can only be obtained with the consent of the
target domain or with the consent of someone who already
has a door identifier for the same door.

As far as the target domain is concerned, all invocations
on a given door are equivalent. It is only aware that the
invoker has somehow acquired an appropriate door identi-
fier. It does not know who the invoker is or which door
identifier they have used.

5.2 Object Invocation Via Doors
Using doors, Spring provides a highly efficient mechanism
for cross-address-space object invocation. A thread in one
address space can issue a door invocation for an object in
another address space. The nucleus allocates a server
thread in the target address space and quickly transfers
control to that thread, passing it information associated
with the door plus the argument data passed by the calling
thread.

When the called thread wishes to return, the nucleus deac-
tivates the calling thread and reactivates the caller thread,
passing it any return data specified by the called thread.

For a call with minimal arguments, Spring can execute a
low-level cross-address-space door call in 11 µs on a
SPARCstation 2, which is significantly faster than using
more general purpose inter-process communication mech-
anisms [1].

Doors can be passed as arguments or results of calls. The
nucleus will create appropriate door table entries for the
given doors in the recipient’s door table and give the recip-
ient door identifiers for them.

6 Network Proxies

To provide object invocation across the network, the
nucleus invocation mechanism is extended by network
proxies that connect up the nuclei of different machines in
a transparent way. These proxies are normal user-mode
server domains and receive no special support from the
nucleus. One Spring machine might include several proxy
domains that speak different network protocols.

Target
Domain

Target
Domain

Door
tables

Doors

Domain

Domain

Door
Identifiers

FIGURE 5. Domains, doors, and door tables

Proxies transparently forward door invocations between
domains on different machines. In Figure 6, when a client
on machine B invokes door Y, this door invocation goes to
network proxy B; B forwards the call over the net to its
buddy, proxy A; proxy A does a door invocation; and the
door invocation then arrives in the server domain.

Notice that neither the client nor the server need be aware
that the proxies exist. The client just performs a normal
door invocation, the server just sees a normal incoming
door invocation.

Door identifiers are mapped into network handles when
they are transmitted over the network, and are mapped
back into doors when they are received from the network.

A network handle contains a network address for the cre-
ating proxy, and a set of bits to identify a particular door
that is exported by this proxy. In theory the set of bits is
large enough to make it hard for a malicious user to guess
the value of a network handle, thereby providing protec-
tion against users forging network handles.

7 Spring’s security model

One of Spring’s goals is to provide secure access to
objects, so that object implementations can control access
to particular data or services. To provide security we sup-
port two basic mechanisms, Access Control Lists and soft-
ware capabilities.

Any object can support an Access Control List (ACL) that
defines which users of groups of users are allowed access
to that object. These Access Control Lists can be checked
at runtime to determine whether a given client is really
allowed to access a given object.

When a given client proves that it is allowed to access a
given object, the object’s server creates an object reference
that acts as a software capability. This object reference
uses a nucleus door as part of its representation so that it

Client
Domain

Proxy
B

Nucleus B

Door Y

Server
Domain

Proxy
A

Nucleus A

Door X

FIGURE 6. Using proxies to forward a call between machines

cannot be forged by a malicious user. This door points to a
front object inside the server. A front object is not a Spring
object, but rather whatever the server’s language of imple-
mentation defines an object to be.

A front object encapsulates information identifying the
principal (e.g., a user) to which the software capability
was issued and the access rights granted to that principal.

A given server may create many different front objects,
encapsulating different access rights, all pointing to the
same piece of underlying state. Later, when the client
issues an object invocation on the object reference, the
invocation request is transmitted securely through the
nucleus door and delivered to the front object. The front
object then checks that the request is permissible based on
the encapsulated access rights, and if so, forwards the
request into the server. For example, if the client issued an
update request, the front object would check that the
encapsulated access included write access.

When a client is given an object reference that is acting as
a capability they can pass that object reference on to other
clients. These other clients can then use the object refer-
ence freely and will receive all the access that was granted
to the original client.

For example, say that user X has a file object foo, which
has a restricted access control list specifying that only X is
allowed to read the file. However X would like to print the
file on a printserver P. P is not on the ACL for foo, so it
would not normally have access to foo’s data. However, X
can obtain an object reference that will act as a software
capability, encapsulating the read access that X is allowed
to foo. X can then pass that object reference on to the
printserver P and P will be able to read the file.

Client
Domain

Nucleus
Door

Object
reference

front object
access = rw

principal = kgh

underlying
object ACL

FIGURE 7. A client accessing a secure object

The use of software capabilities in Spring makes it easy
for application programs to pass objects to servers in a
way that allows the server to actually use the given object.

8 Virtual Memory

Spring implements an extensible, demand-paged virtual
memory system that separates the functionality of caching
pages from the tasks of storing and retrieving pages [7].

8.1 Overview
A per-machine virtual memory manager (VMM) handles
mapping, sharing, protecting, transferring, and caching of
local memory. The VMM depends on external pagers for
accessing backing store and maintaining inter-machine
coherency.

Most clients of the virtual memory system only deal with
address space and memory objects. An address space
object represents the virtual address space of a Spring
domain while a memory object is an abstraction of mem-
ory that can be mapped into address spaces. An example
of a memory object is a file object (the file interface in
Spring inherits from the memory object interface).
Address space objects are implemented by the VMM.

A memory object has operations to set and query the
length, and an operation to bind to the object (see Section
8.2). There are no page-in/out or read/write operations on
memory objects. The Spring file interface provides file
read/write operations (but not page-in/page-out opera-
tions). Separating the memory abstraction from the inter-
face that provides the paging operations is a feature of the
Spring virtual memory system that we found very useful
in implementing our file system [13]. This separation
enables the memory object server to be in a different

memory objects

address space

FIGURE 8. User’s view of address spaces

An address space is a linear range of addresses with regions
mapped to memory objects. Each region is mapped to a (part
of) a memory object. Each page within a mapped region may
be mapped with read/write/execute permissions and may be
locked in memory.

machine than the pager object server which provides the
contents of the memory object.

8.2 Cache and Pager Objects
In order to allow data to be coherently cached by more
than one VMM, there needs to be a two-way connection
between the VMM and an external pager (e.g., a file
server). The VMM needs a connection to the external
pager to allow the VMM to obtain and write out data, and
the external pager needs a connection to the VMM to
allow the provider to perform coherency actions (e.g., to
invalidate data cached by the VMM). We represent this
two-way connection as two objects.

The VMM obtains data by invoking a pager object imple-
mented by an external pager, and an external pager per-
forms coherency actions by invoking a cache object
implemented by a VMM.

When a VMM is asked to map a memory object into an
address space, the VMM must be able to obtain a pager
object to allow it to manipulate the object’s data. Associ-
ated with this pager object must be a cache object that the
external pager can use for coherency.

A VMM wants to ensure that two equivalent memory
objects (e.g., two memory objects that refer to the same
file on disk), when mapped, will share the data cached by
the VMM. To do this, the VMM invokes a bind operation
on the memory object. The bind operation returns a cach-
e_rights object, which is always implemented by the
VMM itself. If two equivalent memory objects are
mapped, then the same cache_rights object will be
returned. The VMM uses the returned object to find a
pager-cache object connection to use, and to find any
pages cached for the memory object.

When a memory object receives a bind operation from a
VMM, it must determine if there is already a pager-cache
object connection for the memory object at the given
VMM. If there is no connection, the external pager imple-
menting the memory object contacts the VMM, and the
VMM and the external pager exchange pager, cache, and
cache_rights objects. Once the connection is set up, the
memory object returns the appropriate cache_rights object
to the VMM.

Typically, there are many pager-cache object channels
between a given pager and a VMM (see Figure 9 for an
example).

8.3 Maintaining Data Coherency
The task of maintaining data coherency between different
VMMs that are caching a memory object is the responsi-

bility of the external pager implementing the memory
object. The coherency protocol is not specified by the
architecture—external pagers are free to implement what-
ever coherency protocol they wish. The cache and pager
object interfaces provide basic building blocks for con-
structing the coherency protocol. Our current external
pager implementations use a single-writer/multiple-reader
per-block coherency protocol [12, 13].

9 File System

The file system architecture defines file objects that are
implemented by file servers. The file object interface
inherits from the memory object and io interfaces. There-
fore, file objects may be memory mapped (because they
are also memory objects), and they can also be accessed
using the read/write operations of the io interface.

Spring includes file systems giving access to files on local
disks as well as over the network. Each file system uses
the Spring security and naming architectures to provide
access control and directory services.

A Spring file system typically consists of several layered
file servers [5]. The pager-cache object paradigm is used
by file systems as a general layering mechanism between
the different file servers and virtual memory managers.
Among other things, this has enabled us to provide per-
machine caching of data and attributes to decrease the
number of network accesses for remote files.

VMM 1 VMM 2

FIGURE 9. Pager-cache object example

Pager 1
pager
object

A VMM and an external pager have a two-way pager-cache
object connection. In this example, Pager 1 is the pager for
two distinct memory objects cached by VMM 1, so there
are two pager-cache object connections, one for each mem-
ory object. Pager 2 is the pager for a single memory object
cached at both VMM 1 and VMM 2, so there is a pager-
cache object connection between Pager 2 and each of the
VMMs.

pager
object

Pager 2
pager
object

pager
object

cache
object

cache
object

cache
object

cache
object

9.1 File Server Implementations
The Spring Storage File System (SFS) is implemented
using two layers as shown in Figure 10.

The base disk layer implements an on-disk Unix compati-
ble file system. It does not, however, implement a coher-
ency algorithm. Instead, an instance of the coherency file
server is stacked on the disk layer, and all files are
exported to clients via the coherency layer.

The coherency layer implements a per-block multiple-
reader/single-writer coherency protocol. Among other
things, the implementation keeps track of the state of each
file block (read-only vs. read-write) and of each cache
object that holds the block at any point in time. Coherency
actions are triggered depending on the state and the cur-
rent request using a single-writer/multiple-reader per-
block coherency algorithm. The coherency layer also
caches file attributes.

The Caching File System (CFS) is an attribute-caching file
system. Its main function is to interpose itself between
remote files and local clients when they are passed to the
local machine so as to increase the efficiency of many
operations. Once interposed on, all calls to remote files
end up being diverted to the local CFS.

An interesting aspect of CFS is the manner in which it
dynamically interposes on individual remote DFS files. A
caching subcontract is used to contact the local CFS in the
process of unmarshalling file objects. When CFS is asked
to interpose on a file, it becomes a cache manager for the
remote file by invoking the bind operation on the file as
described in Section 8.2.

10 Spring Naming

An operating system has various kinds of objects that need
to be given names, such as users, files, printers, machines,
services, etc. Most operating systems provide several
name services, each tailored for a specific kind of object.
Such type specific name services are usually built into the
subsystem implementing those objects. For example, file
systems typically implement their own naming service for
naming files (directories).

FIGURE 10. Spring SFS

Coherency layer

Disk layer

SFS

All files are

Disk drive

exported by
coherency
layer

In contrast, Spring provides a uniform name service [17].
In principle, any object can be bound to any name. This
applies whether the object is local to a process, local to a
machine, or resident elsewhere on the network, whether it
is transient or persistent; whether it is a standard system
object, a process environment object, or a user specific
object. Name services and name spaces do not need to be
segregated by object type. Different name spaces can be
composed to create new name spaces.

By using a common name service, we avoid burdening cli-
ents with the requirement to use different names or differ-
ent name services depending on what objects are being
accessed. Similarly, we avoid burdening all object imple-
mentations with constructing name spaces—the name ser-
vice provides critical support to integrate new kinds of
objects and new implementations of existing objects into
Spring. Object implementations maintain control over the
representation and storage of their objects, who is allowed
access to them, and other crucial details. Although Spring
has a common name service and naming interface, the
architecture allows different name servers with different
implementation properties to be used as part of the name
service.

The name service allows an object to be associated with a
name in a context, an object that contains a set of name–
to–object associations, or name bindings, and which is
used by clients to perform all naming operations. An
object may be bound to several different names in possibly
several different contexts at the same time. Indeed, an
object need not be bound to a name at all.

By binding contexts in other contexts we can create a
naming graph (informally called a name space), a directed
graph with nodes and labeled edges, where the nodes with
outgoing edges are contexts.

Unlike naming in traditional systems, Spring contexts and
name spaces are first class objects: they can be accessed
and manipulated directly. For example, two applications
can exchange and share a private name space. Tradition-
ally, such applications would have had to build their own
naming facility, or incorporate the private name space into
a larger system–wide name space, and access it indirectly
via the root or working context.

Since Spring objects are not persistent by default, naming
is used to provide persistence [16]. It is expected that
applications generally will (re)acquire objects from the
name service. If the part of the name space in which the
object is found is persistent, then the object will have been
made persistent also.

A Spring name server managing a persistent part of a
name space converts objects to and from their persistent

form (much like the UNIX file system, which converts
open files to and from their persistent form). However,
since naming is a generic service for an open–ended col-
lection of object types, a context cannot be expected to
know how to make each object type persistent. Spring
object managers have ultimate control of the (hidden)
states of their objects. Therefore we provide a general
interface between object managers and the name service
that allows persistence to be integrated into the name ser-
vice while allowing the implementation to control how its
(hidden) objects’ states are mapped to and from a persis-
tent representation.

Because the name service is the most common mechanism
for acquiring objects, it is a natural place for access control
and authentication. Since the name service must provide
these functions to protect the name space, it is reasonable
to use the same mechanism to protect named objects. The
naming architecture allows object managers to determine
how much to trust a particular name server, and an object
manager is permitted to forego the convenience and
implement its own access control and authentication if it
wishes. Similarly, name servers can choose to trust or not
to trust other name servers.

The Spring name service does not prescribe particular
naming policies; different policies can be built on the top.
Our current policy is to provide a combination of system-
supplied shared name spaces, per-user name spaces, and
per-domain name spaces that can be customized by attach-
ing name spaces from different parts of the distributed
environment.

By default, at start-up each domain is passed from its par-
ent a private domain name space, which incorporates the
user and system name spaces. A domain can acquire other
name spaces and contexts if it desires.

11 UNIX Emulation

Spring can run Solaris binaries using the UNIX emulation
subsystem [6]. It is implemented entirely by user-level
code, employs no actual UNIX code, and provides binary
compatibility for a large set of Solaris programs. The sub-
system uses services already provided by the underlying
Spring system and only implements UNIX-specific fea-
tures that have no counterpart in Spring (e.g., signals). No
modifications to the base Spring system were necessary to
implement Solaris emulation.

The implementation consists of two components: a shared
library (libue.so) that is dynamically linked with each
Solaris binary, and a set of UNIX-specific services

exported via Spring objects implemented by a UNIX pro-
cess server (in a separate domain). See Figure 4.

The UNIX process server implements functions that are
not part of the Spring base system and which cannot reside
in libue.so due to security reasons.

11.1 Libue
When a program is execed, libue.so is dynamically linked
with the application image in place of libc, thus enabling
the application to run unchanged.

The libue.so library encapsulates some of the functionality
that normally resides in a monolithic UNIX kernel. In par-
ticular, it delivers signals forwarded by the UNIX process
server, and keeps track of the association between UNIX
file descriptor numbers (fd’s) and Spring file objects.

For each UNIX system call, we implemented a library
stub. In general, there are three kinds of calls:

1. Calls that simply take as an argument an fd, parse any
passed flags, and invoke a Spring service (e.g., read,
write, and mmap). Most file system and virtual mem-
ory operations fall in this category.

2. Calls that eventually call a UNIX-specific service in
the UNIX process server. Examples include pipe and
kill.

3. Calls that change the local state without calling any
other domain. Dup, parts of fcntl, and many signal han-
dling calls fall into this category.

11.2 UNIX Process Server
The UNIX process server maintains the parent-child rela-
tionship among processes, keeps track of process and
group ids, provides sockets and pipes, and forwards sig-
nals.

The UNIX process server is involved in forking and exec-
ing of new processes. It is also involved in forwarding (but
not delivering signals). Since it keeps track of process and
group ids, it enforces UNIX security semantics when ser-
vicing requests from client processes.

12 Conclusions

The Spring project chose to build a different operating sys-
tem, one based on the notions of strong interfaces, open-
ness and extensibility and designed to be distributed and
suited to multiprocessors. Using object-oriented ideas and
strong interfaces has been a natural fit, with a number of
benefits:

• A standardized basis for open, distributed object sys-
tems via the Interface Definition Language and a sim-
ple client model for objects

• Easy distributed services and applications
• Readily extensible system facilities, such as file sys-

tems and name services
• Unity of architecture together with a wide range of

implementation opportunities as in virtual memory
management, naming, subcontract, and serverless
objects

• Highly efficient inter-address space object invocation
in support of a microkernel-based architecture.

Finally, designing in security mechanisms from the start
has provided a system that can support a wide range of
secure mechanisms in a networked environment, from the
most relaxed to the most secure.

13 References

[1] Graham Hamilton and Panos Kougiouris, “The Spring
Nucleus: A Microkernel for Objects,” Proc. 1993 Summer
USENIX Conference, pp. 147-160, June 1993.

[2] Graham Hamilton, Michael L. Powell, and James G. Mitch-
ell, “Subcontract: A Flexible Base for Distributed Program-
ming,” Proc. 14th ACM Symposium on Operating Systems
Principles, pp. 69-79, December 1993.

[3] Graham Hamilton and Sanjay Radia, “Using Interface Inher-
itance to Address Problems in System Software Evolution,”
Proc. ACM Workshop on Interface Definition Languages,
January 1994.

[4] Peter B. Kessler, “A Client-Side Stub Interpreter,” Proc.
ACM Workshop on Interface Definition Languages, January
1994.

[5] Yousef A. Khalidi and Michael N. Nelson, “Extensible File
Systems in Spring,” Proc. 14th ACM Symposium on Operat-
ing Systems Principles, pp. 1-14, December 1993.

[6] Yousef A. Khalidi and Michael N. Nelson, “An Implementa-
tion of UNIX on an Object-oriented Operating System,”

Proc. Winter 1993 USENIX Conference, pp. 469-479, Janu-
ary 1993.

[7] Yousef A. Khalidi and Michael N. Nelson, “The Spring Vir-
tual Memory System,” Sun Microsystems Laboratories
Technical Report SMLI-93-9, March 1993.

[8] Yousef A. Khalidi and Michael N. Nelson, “A Flexible Exter-
nal Paging Interface,” Proc. 2nd Workshop on Microkernels
and Other Kernel Architectures, September 1993.

[9] Michael N. Nelson and Graham Hamilton, “High Perfor-
mance Dynamic Linking Through Caching,” Proc. 1993
Summer USENIX Conference, pp. 253-266, June 1993.

[10] Michael N. Nelson, Graham Hamilton, and Yousef A. Kha-
lidi, “Caching in an Object-Oriented System,” Proc. 3rd
International Workshop on Object Orientation in Operating
Systems (I-WOOOS III), pp. 95-106, December 1993.

[11] Michael N. Nelson and Yousef A. Khalidi, “Generic Support
for Caching and Disconnected Operation,” Proc. 4th Work-
shop on Workstation Operating Systems (WWOS-IV), pp.
61-65, October 1993.

[12] Michael N. Nelson, Yousef A. Khalidi, and Peter W.
Madany, “Experience Building a File System on a Highly
Modular Operating System,” Proc. 4th Symposium on Expe-
riences with Distributed and Multiprocessor Systems
(SEDMS IV), September 1993.

[13] Michael N. Nelson, Yousef A. Khalidi, and Peter W.
Madany, “The Spring File System,” Sun Microsystems Lab-
oratories Technical Report SMLI-93-10, March 1993.

[14] Michael N. Nelson and Sanjay R. Radia, “A Uniform Name
Service for Spring’s Unix Environment,” Proc. Winter 1994
USENIX Conference, Jan. 1994.

[15] Object Management Group, “Common Object Request Bro-
ker Architecture and Specification,” OMG Document
91.12.1, December 1991.

[16] Sanjay Radia, Peter Madany, and Michael L. Powell, “Per-
sistence in the Spring System,” Proc. 3rd International Work-
shop on Object Orientation in Operating Systems (I-
WOOOS III), pp. 12-23, December 1993.

[17] Sanjay R. Radia, Michael N. Nelson, and Michael L. Pow-
ell, “The Spring Name Service,” Sun Microsystems Labora-
tories Technical Report SMLI-93-16, October 1993.

An Analysis of Linux Scalability to Many Cores

Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich

MIT CSAIL

ABSTRACT

This paper analyzes the scalability of seven system appli-

cations (Exim, memcached, Apache, PostgreSQL, gmake,

Psearchy, and MapReduce) running on Linux on a 48-

core computer. Except for gmake, all applications trigger

scalability bottlenecks inside a recent Linux kernel. Us-

ing mostly standard parallel programming techniques—

this paper introduces one new technique, sloppy coun-

ters—these bottlenecks can be removed from the kernel

or avoided by changing the applications slightly. Modify-

ing the kernel required in total 3002 lines of code changes.

A speculative conclusion from this analysis is that there

is no scalability reason to give up on traditional operating

system organizations just yet.

1 INTRODUCTION

There is a sense in the community that traditional kernel

designs won’t scale well on multicore processors: that

applications will spend an increasing fraction of their time

in the kernel as the number of cores increases. Promi-

nent researchers have advocated rethinking operating sys-

tems [10, 28, 43] and new kernel designs intended to al-

low scalability have been proposed (e.g., Barrelfish [11],

Corey [15], and fos [53]). This paper asks whether tradi-

tional kernel designs can be used and implemented in a

way that allows applications to scale.

This question is difficult to answer conclusively, but

we attempt to shed a small amount of light on it. We

analyze scaling a number of system applications on

Linux running with a 48-core machine. We examine

Linux because it has a traditional kernel design, and be-

cause the Linux community has made great progress in

making it scalable. The applications include the Exim

mail server [2], memcached [3], Apache serving static

files [1], PostgreSQL [4], gmake [23], the Psearchy file

indexer [35, 48], and a multicore MapReduce library [38].

These applications, which we will refer to collectively

as MOSBENCH, are designed for parallel execution and

stress many major Linux kernel components.

Our method for deciding whether the Linux kernel

design is compatible with application scalability is as

follows. First we measure scalability of the MOSBENCH

applications on a recent Linux kernel (2.6.35-rc5, released

July 12, 2010) with 48 cores, using the in-memory tmpfs

file system to avoid disk bottlenecks. gmake scales well,

but the other applications scale poorly, performing much

less work per core with 48 cores than with one core. We

attempt to understand and fix the scalability problems, by

modifying either the applications or the Linux kernel. We

then iterate, since fixing one scalability problem usually

exposes further ones. The end result for each applica-

tion is either good scalability on 48 cores, or attribution

of non-scalability to a hard-to-fix problem with the ap-

plication, the Linux kernel, or the underlying hardware.

The analysis of whether the kernel design is compatible

with scaling rests on the extent to which our changes to

the Linux kernel turn out to be modest, and the extent

to which hard-to-fix problems with the Linux kernel ulti-

mately limit application scalability.

As part of the analysis, we fixed three broad kinds of

scalability problems for MOSBENCH applications: prob-

lems caused by the Linux kernel implementation, prob-

lems caused by the applications’ user-level design, and

problems caused by the way the applications use Linux

kernel services. Once we identified a bottleneck, it typi-

cally required little work to remove or avoid it. In some

cases we modified the application to be more parallel, or

to use kernel services in a more scalable fashion, and in

others we modified the kernel. The kernel changes are all

localized, and typically involve avoiding locks and atomic

instructions by organizing data structures in a distributed

fashion to avoid unnecessary sharing. One reason the

required changes are modest is that stock Linux already

incorporates many modifications to improve scalability.

More speculatively, perhaps it is the case that Linux’s

system-call API is well suited to an implementation that

avoids unnecessary contention over kernel objects.

The main contributions of this paper are as follows.

The first contribution is a set of 16 scalability improve-

ments to the Linux 2.6.35-rc5 kernel, resulting in what we

refer to as the patched kernel, PK. A few of the changes

rely on a new idea, which we call sloppy counters, that

has the nice property that it can be used to augment shared

counters to make some uses more scalable without having

to change all uses of the shared counter. This technique

is particularly effective in Linux because typically only

a few uses of a given shared counter are scalability bot-

tlenecks; sloppy counters allow us to replace just those

few uses without modifying the many other uses in the

kernel. The second contribution is a set of application

1

characteristic
sources of
scalability
problems

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Underline

benchmarks, MOSBENCH, to measure scalability of op-

erating systems, which we make publicly available. The

third is a description of the techniques required to im-

prove the scalability of the MOSBENCH applications. Our

final contribution is an analysis using MOSBENCH that

suggests that there is no immediate scalability reason to

give up on traditional kernel designs.

The rest of the paper is organized as follows. Section 2

relates this paper to previous work. Section 3 describes

the applications in MOSBENCH and what operating sys-

tem components they stress. Section 4 summarizes the

differences between the stock and PK kernels. Section 5

reports on the scalability of MOSBENCH on the stock

Linux 2.6.35-rc5 kernel and the PK kernel. Section 6

discusses the implications of the results. Section 7 sum-

marizes this paper’s conclusions.

2 RELATED WORK

There is a long history of work in academia and industry

to scale Unix-like operating systems on shared-memory

multiprocessors. Research projects such as the Stanford

FLASH [33] as well as companies such as IBM, Se-

quent, SGI, and Sun have produced shared-memory ma-

chines with tens to hundreds processors running variants

of Unix. Many techniques have been invented to scale

software for these machines, including scalable locking

(e.g., [41]), wait-free synchronization (e.g., [27]), mul-

tiprocessor schedulers (e.g., [8, 13, 30, 50]), memory

management (e.g., [14, 19, 34, 52, 57]), and fast message

passing using shared memory (e.g., [12, 47]). Textbooks

have been written about adapting Unix for multiproces-

sors (e.g., [46]). These techniques have been incorporated

in current operating systems such as Linux, Mac OS X,

Solaris, and Windows. Cantrill and Bonwick summarize

the historical context and real-world experience [17].

This paper extends previous scalability studies by ex-

amining a large set of systems applications, by using a

48-core PC platform, and by detailing a particular set of

problems and solutions in the context of Linux. These

solutions follow the standard parallel programming tech-

nique of factoring data structures so that each core can

operate on separate data when sharing is not required, but

such that cores can share data when necessary.

Linux scalability improvements. Early multiproces-

sor Linux kernels scaled poorly with kernel-intensive par-

allel workloads because the kernel used coarse-granularity

locks for simplicity. Since then the Linux commu-

nity has redesigned many kernel subsystems to im-

prove scalability (e.g., Read-Copy-Update (RCU) [39],

local run queues [6], libnuma [31], and improved

load-balancing support [37]). The Linux symposium

(www.linuxsymposium.org) features papers related to

scalability almost every year. Some of the redesigns are

based on the above-mentioned research, and some com-

panies, such as IBM and SGI [16], have contributed code

directly. Kleen provides a brief history of Linux kernel

modifications for scaling and reports some areas of poor

scalability in a recent Linux version (2.6.31) [32]. In this

paper, we identify additional kernel scaling problems and

describes how to address them.

Linux scalability studies. Gough et al. study the scal-

ability of Oracle Database 10g running on Linux 2.6.18

on dual-core Intel Itanium processors [24]. The study

finds problems with the Linux run queue, slab alloca-

tor, and I/O processing. Cui et al. uses the TPCC-UVa

and Sysbench-OLTP benchmarks with PostgreSQL to

study the scalability of Linux 2.6.25 on an Intel 8-core

system [56], and finds application-internal bottlenecks

as well as poor kernel scalability in System V IPC. We

find that these problems have either been recently fixed

by the Linux community or are a consequence of fixable

problems in PostgreSQL.

Veal and Foong evaluate the scalability of Apache run-

ning on Linux 2.6.20.3 on an 8-core AMD Opteron com-

puter using SPECweb2005 [51]. They identify Linux scal-

ing problems in the kernel implementations of scheduling

and directory lookup, respectively. On a 48-core com-

puter, we also observe directory lookup as a scalability

problem and PK applies a number of techniques to ad-

dress this bottleneck. Pesterev et al. identify scalability

problems in the Linux 2.6.30 network code using mem-

cached and Apache [44]. The PK kernel addresses these

problems by using a modern network card that supports a

large number of virtual queues (similar to the approach

taken by Route Bricks [21]).

Cui et al. describe microbenchmarks for measuring

multicore scalability and report results from running them

on Linux on a 32-core machine [55]. They find a number

of scalability problems in Linux (e.g., memory-mapped

file creation and deletion). Memory-mapped files show

up as a scalability problem in one MOSBENCH application

when multiple threads run in the same address space with

memory-mapped files.

A number of new research operating systems use scal-

ability problems in Linux as motivation. The Corey pa-

per [15] identified bottlenecks in the Linux file descriptor

and virtual memory management code caused by unneces-

sary sharing. Both of these bottlenecks are also triggered

by MOSBENCH applications. The Barrelfish paper [11]

observed that Linux TLB shootdown scales poorly. This

problem is not observed in the MOSBENCH applications.

Using microbenchmarks, the fos paper [53] finds that the

physical page allocator in Linux 2.6.24.7 does not scale

beyond 8 cores and that executing the kernel and applica-

tions on the same core results in cache interference and

high miss rates. We find that the page allocator isn’t a

bottleneck for MOSBENCH applications on 48 cores (even

though they stress memory allocation), though we have

2

connection
to the 1-st paper

tell me something
I don't know

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Highlight

reason to believe it would be a problem with more cores.

However, the problem appears to be avoidable by, for

example, using super-pages or modifying the kernel to

batch page allocation.

Solaris scalability studies. Solaris provides a UNIX

API and runs on SPARC-based and x86-based multi-

core processors. Solaris incorporates SNZIs [22], which

are similar to sloppy counters (see section 4.3). Tseng

et al. report that SAP-SD, IBM Trade and several syn-

thetic benchmarks scale well on an 8-core SPARC system

running Solaris 10 [49]. Zou et al. encountered coarse

grained locks in the UDP networking stack of Solaris

10 that limited scalability of the OpenSER SIP proxy

server on an 8-core SPARC system [29]. Using the mi-

crobenchmarks mentioned above [55], Cui et al. compare

FreeBSD, Linux, and Solaris [54], and find that Linux

scales better on some microbenchmarks and Solaris scales

better on others. We ran some of the MOSBENCH appli-

cations on Solaris 10 on the 48-core machine used for

this paper. While the Solaris license prohibits us from re-

porting quantitative results, we observed similar or worse

scaling behavior compared to Linux; however, we don’t

know the causes or whether Solaris would perform better

on SPARC hardware. We hope, however, that this paper

helps others who might analyze Solaris.

3 THE MOSBENCH APPLICATIONS

To stress the kernel we chose two sets of applications:

1) applications that previous work has shown not to

scale well on Linux (memcached; Apache; and Metis, a

MapReduce library); and 2) applications that are designed

for parallel execution and are kernel intensive (gmake,

PostgreSQL, Exim, and Psearchy). Because many ap-

plications are bottlenecked by disk writes, we used an

in-memory tmpfs file system to explore non-disk limita-

tions. We drive some of the applications with synthetic

user workloads designed to cause them to use the ker-

nel intensively, with realism a secondary consideration.

This collection of applications stresses important parts

of many kernel components (e.g., the network stack, file

name cache, page cache, memory manager, process man-

ager, and scheduler). Most spend a significant fraction

of their CPU time in the kernel when run on a single

core. All but one encountered serious scaling problems

at 48 cores caused by the stock Linux kernel. The rest of

this section describes the selected applications, how they

are parallelized, and what kernel services they stress.

3.1 Mail server

Exim [2] is a mail server. We operate it in a mode where

a single master process listens for incoming SMTP con-

nections via TCP and forks a new process for each con-

nection, which in turn accepts the incoming mail, queues

it in a shared set of spool directories, appends it to the

per-user mail file, deletes the spooled mail, and records

the delivery in a shared log file. Each per-connection pro-

cess also forks twice to deliver each message. With many

concurrent client connections, Exim has a good deal of

parallelism. It spends 69% of its time in the kernel on

a single core, stressing process creation and small file

creation and deletion.

3.2 Object cache

memcached [3] is an in-memory key-value store often

used to improve web application performance. A single

memcached server running on multiple cores is bottle-

necked by an internal lock that protects the key-value hash

table. To avoid this problem, we run multiple memcached

servers, each on its own port, and have clients determin-

istically distribute key lookups among the servers. This

organization allows the servers to process requests in par-

allel. When request sizes are small, memcached mainly

stresses the network stack, spending 80% of its time pro-

cessing packets in the kernel at one core.

3.3 Web server

Apache [1] is a popular Web server, which previous work

(e.g., [51]) has used to study Linux scalability. We run a

single instance of Apache listening on port 80. We config-

ure this instance to run one process per core. Each process

has a thread pool to service connections; one thread is

dedicated to accepting incoming connections while the

other threads process the connections. In addition to the

network stack, this configuration stresses the file system

(in particular directory name lookup) because it stats and

opens a file on every request. Running on a single core,

an Apache process spends 60% of its execution time in

the kernel.

3.4 Database

PostgreSQL [4] is a popular open source SQL database,

which, unlike many of our other workloads, makes exten-

sive internal use of shared data structures and synchro-

nization. PostgreSQL also stresses many shared resources

in the kernel: it stores database tables as regular files

accessed concurrently by all PostgreSQL processes, it

starts one process per connection, it makes use of kernel

locking interfaces to synchronize and load balance these

processes, and it communicates with clients over TCP

sockets that share the network interface.

Ideally, PostgreSQL would scale well for read-mostly

workloads, despite its inherent synchronization needs.

PostgreSQL relies on snapshot isolation, a form of opti-

mistic concurrency control that avoids most read locks.

Furthermore, most write operations acquire only row-

level locks exclusively and acquire all coarser-grained

locks in shared modes. Thus, in principle, PostgreSQL

should exhibit little contention for read-mostly workloads.

In practice, PostgreSQL is limited by bottlenecks in both

3

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

its own code and in the kernel. For a read-only work-

load that avoids most application bottlenecks, PostgreSQL

spends only 1.5% of its time in the kernel with one core,

but this grows to 82% with 48 cores.

3.5 Parallel build

gmake [23] is an implementation of the standard make

utility that supports executing independent build rules

concurrently. gmake is the unofficial default benchmark

in the Linux community since all developers use it to

build the Linux kernel. Indeed, many Linux patches

include comments like “This speeds up compiling the

kernel.” We benchmarked gmake by building the stock

Linux 2.6.35-rc5 kernel with the default configuration

for x86 64. gmake creates more processes than there are

cores, and reads and writes many files. The execution

time of gmake is dominated by the compiler it runs, but

system time is not negligible: with one core, 7.6% of the

execution time is system time.

3.6 File indexer

Psearchy is a parallel version of searchy [35, 48], a pro-

gram to index and query Web pages. We focus on the

indexing component of searchy because it is more system

intensive. Our parallel version, pedsort, runs the searchy

indexer on each core, sharing a work queue of input files.

Each core operates in two phases. In phase 1, it pulls input

files off the work queue, reading each file and recording

the positions of each word in a per-core hash table. When

the hash table reaches a fixed size limit, it sorts it alpha-

betically, flushes it to an intermediate index on disk, and

continues processing input files. Phase 1 is both compute

intensive (looking up words in the hash table and sorting

it) and file-system intensive (reading input files and flush-

ing the hash table). To avoid stragglers in phase 1, the

initial work queue is sorted so large files are processed

first. Once the work queue is empty, each core merges

the intermediate index files it produced, concatenating the

position lists of words that appear in multiple intermedi-

ate indexes, and generates a binary file that records the

positions of each word and a sequence of Berkeley DB

files that map each word to its byte offset in the binary

file. To simplify the scalability analysis, each core starts

a new Berkeley DB every 200,000 entries, eliminating

a logarithmic factor and making the aggregate work per-

formed by the indexer constant regardless of the number

of cores. Unlike phase 1, phase 2 is mostly file-system

intensive. While pedsort spends only 1.9% of its time

in the kernel at one core, this grows to 23% at 48 cores,

indicating scalability limitations.

3.7 MapReduce

Metis is a MapReduce [20] library for single multicore

servers inspired by Phoenix [45]. We use Metis with an

application that generates inverted indices. This workload

allocates large amounts of memory to hold temporary

tables, stressing the kernel memory allocator and soft page

fault code. This workload spends 3% of its runtime in the

kernel with one core, but this rises to 16% at 48 cores.

4 KERNEL OPTIMIZATIONS

The MOSBENCH applications trigger a few scalability

bottlenecks in the kernel. We describe the bottlenecks

and our solutions here, before presenting detailed per-

application scaling results in Section 5, because many

of the bottlenecks are common to multiple applications.

Figure 1 summarizes the bottlenecks. Some of these prob-

lems have been discussed on the Linux kernel mailing

list and solutions proposed; perhaps the reason these solu-

tions have not been implemented in the standard kernel is

that the problems are not acute on small-scale SMPs or

are masked by I/O delays in many applications. Figure 1

also summarizes our solution for each bottleneck.

4.1 Scalability tutorial

Why might one expect performance to scale well with the

number of cores? If a workload consists of an unlimited

supply of tasks that do not interact, then you’d expect to

get linear increases in total throughput by adding cores

and running tasks in parallel. In real life parallel tasks

usually interact, and interaction usually forces serial ex-

ecution. Amdahl’s Law summarizes the result: however

small the serial portion, it will eventually prevent added

cores from increasing performance. For example, if 25%

of a program is serial (perhaps inside some global locks),

then any number of cores can provide no more than 4-

times speedup.

Here are a few types of serializing interactions that

the MOSBENCH applications encountered. These are all

classic considerations in parallel programming, and are

discussed in previous work such as [17].

• The tasks may lock a shared data structure, so that

increasing the number of cores increases the lock

wait time.

• The tasks may write a shared memory location, so

that increasing the number of cores increases the

time spent waiting for the cache coherence proto-

col to fetch the cache line in exclusive mode. This

problem can occur even in lock-free shared data

structures.

• The tasks may compete for space in a limited-size

shared hardware cache, so that increasing the number

of cores increases the cache miss rate. This problem

can occur even if tasks never share memory.

• The tasks may compete for other shared hardware

resources such as inter-core interconnect or DRAM

4

this is hilighted
as a representative
statement, but almost
every benchmark
exhibits this
kernel time growth
as the number of
cores grows

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

Parallel accept Apache

Concurrent accept system calls contend on shared socket fields. ⇒ User per-core backlog queues for listening sockets.

dentry reference counting Apache, Exim

File name resolution contends on directory entry reference counts. ⇒ Use sloppy counters to reference count directory entry objects.

Mount point (vfsmount) reference counting Apache, Exim

Walking file name paths contends on mount point reference counts. ⇒ Use sloppy counters for mount point objects.

IP packet destination (dst entry) reference counting memcached, Apache

IP packet transmission contends on routing table entries. ⇒ Use sloppy counters for IP routing table entries.

Protocol memory usage tracking memcached, Apache

Cores contend on counters for tracking protocol memory consumption. ⇒ Use sloppy counters for protocol usage counting.

Acquiring directory entry (dentry) spin locks Apache, Exim

Walking file name paths contends on per-directory entry spin locks. ⇒ Use a lock-free protocol in dlookup for checking filename matches.

Mount point table spin lock Apache, Exim

Resolving path names to mount points contends on a global spin lock. ⇒ Use per-core mount table caches.

Adding files to the open list Apache, Exim

Cores contend on a per-super block list that tracks open files. ⇒ Use per-core open file lists for each super block that has open files.

Allocating DMA buffers memcached, Apache

DMA memory allocations contend on the memory node 0 spin lock. ⇒ Allocate Ethernet device DMA buffers from the local memory node.

False sharing in net device and device memcached, Apache, PostgreSQL

False sharing causes contention for read-only structure fields. ⇒ Place read-only fields on their own cache lines.

False sharing in page Exim

False sharing causes contention for read-mostly structure fields. ⇒ Place read-only fields on their own cache lines.

inode lists memcached, Apache

Cores contend on global locks protecting lists used to track inodes. ⇒ Avoid acquiring the locks when not necessary.

Dcache lists memcached, Apache

Cores contend on global locks protecting lists used to track dentrys. ⇒ Avoid acquiring the locks when not necessary.

Per-inode mutex PostgreSQL

Cores contend on a per-inode mutex in lseek. ⇒ Use atomic reads to eliminate the need to acquire the mutex.

Super-page fine grained locking Metis

Super-page soft page faults contend on a per-process mutex. ⇒ Protect each super-page memory mapping with its own mutex.

Zeroing super-pages Metis

Zeroing super-pages flushes the contents of on-chip caches. ⇒ Use non-caching instructions to zero the contents of super-pages.

Figure 1: A summary of Linux scalability problems encountered by MOSBENCH applications and their corresponding fixes. The fixes add 2617 lines

of code to Linux and remove 385 lines of code from Linux.

interfaces, so that additional cores spend their time

waiting for those resources rather than computing.

• There may be too few tasks to keep all cores busy,

so that increasing the number of cores leads to more

idle cores.

Many scaling problems manifest themselves as delays

caused by cache misses when a core uses data that other

cores have written. This is the usual symptom both for

lock contention and for contention on lock-free mutable

data. The details depend on the hardware cache coherence

protocol, but the following is typical. Each core has a

data cache for its own use. When a core writes data that

other cores have cached, the cache coherence protocol

forces the write to wait while the protocol finds the cached

copies and invalidates them. When a core reads data

that another core has just written, the cache coherence

protocol doesn’t return the data until it finds the cache that

holds the modified data, annotates that cache to indicate

there is a copy of the data, and fetches the data to the

reading core. These operations take about the same time

as loading data from off-chip RAM (hundreds of cycles),

so sharing mutable data can have a disproportionate effect

on performance.

Exercising the cache coherence machinery by modify-

ing shared data can produce two kinds of scaling problems.

First, the cache coherence protocol serializes modifica-

tions to the same cache line, which can prevent parallel

speedup. Second, in extreme cases the protocol may

saturate the inter-core interconnect, again preventing addi-

tional cores from providing additional performance. Thus

good performance and scalability often demand that data

be structured so that each item of mutable data is used by

only one core.

In many cases scaling bottlenecks limit performance

to some maximum, regardless of the number of cores. In

other cases total throughput decreases as the number of

cores grows, because each waiting core slows down the

cores that are making progress. For example, non-scalable

spin locks produce per-acquire interconnect traffic that is

proportional to the number of waiting cores; this traffic

may slow down the core that holds the lock by an amount

proportional to the number of waiting cores [41]. Acquir-

5

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

ing a Linux spin lock takes a few cycles if the acquiring

core was the previous lock holder, takes a few hundred

cycles if another core last held the lock and there is no

contention, and are not scalable under contention.

Performance is often the enemy of scaling. One way

to achieve scalability is to use inefficient algorithms, so

that each core busily computes and makes little use of

shared resources such as locks. Conversely, increasing

the efficiency of software often makes it less scalable, by

increasing the fraction of time it uses shared resources.

This effect occurred many times in our investigations of

MOSBENCH application scalability.

Some scaling bottlenecks cannot easily be fixed, be-

cause the semantics of the shared resource require serial

access. However, it is often the case that the implementa-

tion can be changed so that cores do not have to wait for

each other. For example, in the stock Linux kernel the set

of runnable threads is partitioned into mostly-private per-

core scheduling queues; in the common case, each core

only reads, writes, and locks its own queue [36]. Many

scaling modifications to Linux follow this general pattern.

Many of our scaling modifications follow this same

pattern, avoiding both contention for locks and contention

for the underlying data. We solved other problems using

well-known techniques such as lock-free protocols or fine-

grained locking. In all cases we were able to eliminate

scaling bottlenecks with only local changes to the kernel

code. The following subsections explain our techniques.

4.2 Multicore packet processing

The Linux network stack connects different stages of

packet processing with queues. A received packet typ-

ically passes through multiple queues before finally ar-

riving at a per-socket queue, from which the application

reads it with a system call like read or accept. Good

performance with many cores and many independent net-

work connections demands that each packet, queue, and

connection be handled by just one core [21, 42]. This

avoids inter-core cache misses and queue locking costs.

Recent Linux kernels take advantage of network cards

with multiple hardware queues, such as Intel’s 82599

10Gbit Ethernet (IXGBE) card, or use software tech-

niques, such as Receive Packet Steering [26] and Receive

Flow Steering [25], to attempt to achieve this property.

With a multi-queue card, Linux can be configured to as-

sign each hardware queue to a different core. Transmit

scaling is then easy: Linux simply places outgoing pack-

ets on the hardware queue associated with the current

core. For incoming packets, such network cards provide

an interface to configure the hardware to enqueue incom-

ing packets matching a particular criteria (e.g., source IP

address and port number) on a specific queue and thus

to a particular core. This spreads packet processing load

across cores. However, the IXGBE driver goes further:

for each core, it samples every 20th outgoing TCP packet

and updates the hardware’s flow directing tables to de-

liver further incoming packets from that TCP connection

directly to the core.

This design typically performs well for long-lived con-

nections, but poorly for short ones. Because the technique

is based on sampling, it is likely that the majority of

packets on a given short connection will be misdirected,

causing cache misses as Linux delivers to the socket on

one core while the socket is used on another. Furthermore,

because few packets are received per short-lived connec-

tion, misdirecting even the initial handshake packet of a

connection imposes a significant cost.

For applications like Apache that simultaneously ac-

cept connections on all cores from the same listening

socket, we address this problem by allowing the hard-

ware to determine which core and thus which application

thread will handle an incoming connection. We modify

accept to prefer connections delivered to the local core’s

queue. Then, if the application processes the connection

on the same core that accepted it (as in Apache), all pro-

cessing for that connection will remain entirely on one

core. Our solution has the added benefit of addressing

contention on the lock that protects the single listening

socket’s connection backlog queue.

To implement this, we configured the IXGBE to direct

each packet to a queue (and thus core) using a hash of the

packet headers designed to deliver all of a connection’s

packets (including the TCP handshake packets) to the

same core. We then modified the code that handles TCP

connection setup requests to queue requests on a per-core

backlog queue for the listening socket, so that a thread

will accept and process connections that the IXGBE di-

rects to the core running that thread. If accept finds the

current core’s backlog queue empty, it attempts to steal

a connection request from a different core’s queue. This

arrangement provides high performance for short connec-

tions by processing each connection entirely on one core.

If threads were to move from core to core while handling

a single connection, a combination of this technique and

the current sampling approach might be best.

4.3 Sloppy counters

Linux uses shared counters for reference-counted garbage

collection and to manage various resources. These coun-

ters can become bottlenecks if many cores update them.

In these cases lock-free atomic increment and decrement

instructions do not help, because the coherence hardware

serializes the operations on a given counter.

The MOSBENCH applications encountered bottle-

necks from reference counts on directory entry objects

(dentrys), mounted file system objects (vfsmounts), net-

work routing table entries (dst entrys), and counters

6

sample problem I
and its solution

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

C
o
re

 0
C

o
re

 1
dentry

refcount

Time

Figure 2: An example of the kernel using a sloppy counter for dentry

reference counting. A large circle represents a local counter, and a gray

dot represents a held reference. In this figure, a thread on core 0 first

acquires a reference from the central counter. When the thread releases

this reference, it adds the reference to the local counter. Finally, another

thread on core 0 is able to acquire the spare reference without touching

the central counter.

tracking the amount of memory allocated by each net-

work protocol (such as TCP or UDP).

Our solution, which we call sloppy counters, builds on

the intuition that each core can hold a few spare references

to an object, in hopes that it can give ownership of these

references to threads running on that core, without having

to modify the global reference count. More concretely,

a sloppy counter represents one logical counter as a sin-

gle shared central counter and a set of per-core counts

of spare references. When a core increments a sloppy

counter by V , it first tries to acquire a spare reference

by decrementing its per-core counter by V . If the per-

core counter is greater than or equal to V , meaning there

are sufficient local references, the decrement succeeds.

Otherwise the core must acquire the references from the

central counter, so it increments the shared counter by

V . When a core decrements a sloppy counter by V , it

releases these references as local spare references, incre-

menting its per-core counter by V . Figure 2 illustrates

incrementing and decrementing a sloppy counter. If the

local count grows above some threshold, spare references

are released by decrementing both the per-core count and

the central count.

Sloppy counters maintain the invariant that the sum

of per-core counters and the number of resources in use

equals the value in the shared counter. For example, a

shared dentry reference counter equals the sum of the

per-core counters and the number of references to the

dentry currently in use.

A core usually updates a sloppy counter by modifying

its per-core counter, an operation which typically only

needs to touch data in the core’s local cache (no waiting

for locks or cache-coherence serialization).

We added sloppy counters to count references to

dentrys, vfsmounts, and dst entrys, and used sloppy

counters to track the amount of memory allocated by

each network protocol (such as TCP and UDP). Only

uses of a counter that cause contention need to be mod-

ified, since sloppy counters are backwards-compatible

with existing shared-counter code. The kernel code that

creates a sloppy counter allocates the per-core counters.

It is occasionally necessary to reconcile the central and

per-core counters, for example when deciding whether an

object can be de-allocated. This operation is expensive,

so sloppy counters should only be used for objects that

are relatively infrequently de-allocated.

Sloppy counters are similar to Scalable NonZero Indi-

cators (SNZI) [22], distributed counters [9], and approxi-

mate counters [5]. All of these techniques speed up incre-

ment/decrement by use of per-core counters, and require

significantly more work to find the true total value. Sloppy

counters are attractive when one wishes to improve the

performance of some uses of an existing counter without

having to modify all points in the code where the counter

is used. A limitation of sloppy counters is that they use

space proportional to the number of cores.

4.4 Lock-free comparison

We found situations in which MOSBENCH applications

were bottlenecked by low scalability for name lookups

in the directory entry cache. The directory entry cache

speeds up lookups by mapping a directory and a file name

to a dentry identifying the target file’s inode. When

a potential dentry is located, the lookup code acquires

a per-dentry spin lock to atomically compare several

fields of the dentry with the arguments of the lookup

function. Even though the directory cache has been op-

timized using RCU for scalability [40], the dentry spin

lock for common parent directories, such as /usr, was

sometimes a bottleneck even if the path names ultimately

referred to different files.

We optimized dentry comparisons using a lock-free

protocol similar to Linux’ lock-free page cache lookup

protocol [18]. The lock-free protocol uses a generation

counter, which the PK kernel increments after every mod-

ification to a directory entry (e.g., mv foo bar). During

a modification (when the dentry spin lock is held), PK

temporarily sets the generation counter to 0. The PK ker-

nel compares dentry fields to the arguments using the

following procedure for atomicity:

• If the generation counter is 0, fall back to the lock-

ing protocol. Otherwise remember the value of the

generation counter.

• Copy the fields of the dentry to local variables. If

the generation afterwards differs from the remem-

bered value, fall back to the locking protocol.

• Compare the copied fields to the arguments. If there

is a match, increment the reference count unless it is

0, and return the dentry. If the reference count is 0,

fall back to the locking protocol.

7

Yeah, really clear figure ...

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Underline

andrey

Highlight

andrey

Highlight

The lock-free protocol improves scalability because it

allows cores to perform lookups for the same directory

entries without serializing.

4.5 Per-core data structures

We encountered three kernel data structures that caused

scaling bottlenecks due to lock contention: a per-super-

block list of open files that determines whether a read-

write file system can be remounted read-only, a table of

mount points used during path lookup, and the pool of

free packet buffers. Though each of these bottlenecks is

caused by lock contention, bottlenecks would remain if

we replaced the locks with finer grained locks or a lock

free protocol, because multiple cores update the data struc-

tures. Therefore our solutions refactor the data structures

so that in the common case each core uses different data.

We split the per-super-block list of open files into per-

core lists. When a process opens a file the kernel locks

the current core’s list and adds the file. In most cases

a process closes the file on the same core it opened it

on. However, the process might have migrated to another

core, in which case the file must be expensively removed

from the list of the original core. When the kernel checks

if a file system can be remounted read-only it must lock

and scan all cores’ lists.

We also added per-core vfsmount tables, each acting

as a cache for a central vfsmount table. When the kernel

needs to look up the vfsmount for a path, it first looks in

the current core’s table, then the central table. If the latter

succeeds, the result is added to the per-core table.

Finally, the default Linux policy for machines with

NUMA memory is to allocate packet buffers (skbuffs)

from a single free list in the memory system closest to the

I/O bus. This caused contention for the lock protecting

the free list. We solved this using per-core free lists.

4.6 Eliminating false sharing

We found some MOSBENCH applications caused false

sharing in the kernel. In the cases we identified, the ker-

nel located a variable it updated often on the same cache

line as a variable it read often. The result was that cores

contended for the falsely shared line, limiting scalabil-

ity. Exim per-core performance degraded because of false

sharing of physical page reference counts and flags, which

the kernel located on the same cache line of a page vari-

able. memcached, Apache, and PostgreSQL faced simi-

lar false sharing problems with net device and device

variables. In all cases, placing the heavily modified data

on a separate cache line improved scalability.

4.7 Avoiding unnecessary locking

For small numbers of cores, lock contention in Linux

does not limit scalability for MOSBENCH applications.

With more than 16 cores, the scalability of memcached,

Apache, PostgreSQL, and Metis are limited by waiting for

Stock
PK

0

0.2

0.4

0.6

0.8

1

Exim memcached Apache PostgreSQL gmake pedsort Metis

P
er
-c
o
re

th
ro
u
g
h
p
u
t
at
4
8
co
re
s
re
la
ti
v
e
to

1
co
re

Figure 3: MOSBENCH results summary. Each bar shows the ratio of

per-core throughput with 48 cores to throughput on one core, with 1.0

indicating perfect scalability. Each pair of bars corresponds to one

application before and after our kernel and application modifications.

and acquiring spin locks and mutexes1 in the file system

and virtual memory management code. In many cases we

were able to eliminate acquisitions of the locks altogether

by modifying the code to detect special cases when ac-

quiring the locks was unnecessary. In one case, we split

a mutex protecting all the super page mappings into one

mutex per mapping.

5 EVALUATION

This section evaluates the MOSBENCH applications on

the most recent Linux kernel at the time of writing

(Linux 2.6.35-rc5, released on July 12, 2010) and our

modified version of this kernel, PK. For each applica-

tion, we describe how the stock kernel limits scalability,

and how we addressed the bottlenecks by modifying the

application and taking advantage of the PK changes.

Figure 3 summarizes the results of the MOSBENCH

benchmark, comparing application scalability before and

after our modifications. A bar with height 1.0 indicates

perfect scalability (48 cores yielding a speedup of 48).

Most of the applications scale significantly better with

our modifications. All of them fall short of perfect scal-

ability even with those modifications. As the rest of this

section explains, the remaining scalability bottlenecks are

not the fault of the kernel. Instead, they are caused by

non-parallelizable components in the application or un-

derlying hardware: resources that the application’s design

requires it to share, imperfect load balance, or hardware

bottlenecks such as the memory system or the network

card. For this reason, we conclude that the Linux ker-

nel with our modifications is consistent with MOSBENCH

scalability up to 48 cores.

For each application we show scalability plots in the

same format, which shows throughput per core (see, for

example, Figure 4). A horizontal line indicates perfect

1A thread initially busy waits to acquire a mutex, but if the wait time

is long the thread yields the CPU.

8

This should be put
in the beginning of
everything !

Then why didn't
you take another
(a parallelizable)
application ?

Had to say,
"at least 48".
People jumped out
of windows when
they read, "48." !

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

scalability: each core contributes the same amount of

work regardless of the total number of cores. In practice

one cannot expect a truly horizontal line: a single core

usually performs disproportionately well because there

is no inter-core sharing and because Linux uses a stream-

lined lock scheme with just one core, and the per-chip

caches become less effective as more active cores share

them. For most applications we see the stock kernel’s line

drop sharply because of kernel bottlenecks, and the PK

line drop more modestly.

5.1 Method

We run the applications that modify files on a tmpfs in-

memory file system to avoid waiting for disk I/O. The

result is that MOSBENCH stresses the kernel more it would

if it had to wait for the disk, but that the results are not

representative of how the applications would perform

in a real deployment. For example, a real mail server

would probably be bottlenecked by the need to write each

message durably to a hard disk. The purpose of these

experiments is to evaluate the Linux kernel’s multicore

performance, using the applications to generate a reason-

ably realistic mix of system calls.

We run experiments on a 48-core machine, with a Tyan

Thunder S4985 board and an M4985 quad CPU daughter-

board. The machine has a total of eight 2.4 GHz 6-core

AMDOpteron 8431 chips. Each core has private 64 Kbyte

instruction and data caches, and a 512 Kbyte private L2

cache. The cores on each chip share a 6 Mbyte L3 cache,

1 Mbyte of which is used for the HT Assist probe fil-

ter [7]. Each chip has 8 Gbyte of local off-chip DRAM.

A core can access its L1 cache in 3 cycles, its L2 cache in

14 cycles, and the shared on-chip L3 cache in 28 cycles.

DRAM access latencies vary, from 122 cycles for a core

to read from its local DRAM to 503 cycles for a core to

read from the DRAM of the chip farthest from it on the

interconnect. The machine has a dual-port Intel 82599

10Gbit Ethernet (IXGBE) card, though we use only one

port for all experiments. That port connects to an Ethernet

switch with a set of load-generating client machines.

Experiments that use fewer than 48 cores run with

the other cores entirely disabled. memcached, Apache,

Psearchy, and Metis pin threads to cores; the other ap-

plications do not. We run each experiment 3 times and

show the best throughput, in order to filter out unrelated

activity; we found the variation to be small.

5.2 Exim

To measure the performance of Exim 4.71, we configure

Exim to use tmpfs for all mutable files—spool files, log

files, and user mail files—and disable DNS and RFC1413

lookups. Clients run on the same machine as Exim. Each

repeatedly opens an SMTP connection to Exim, sends 10

separate 20-byte messages to a local user, and closes the

SMTP connection. Sending 10 messages per connection

Stock
PK

PK user time
PK system time

0

100

200

300

400

500

600

700

1 4 8 12 16 20 24 28 32 36 40 44 48
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
h
ro
u
g
h
p
u
t
(m

es
sa
g
es

/
se
c
/
co
re
)

C
P
U
ti
m
e
(µ

se
c
/
m
es
sa
g
e)

Cores

Figure 4: Exim throughput and runtime breakdown.

prevents exhaustion of TCP client port numbers. Each

client sends to a different user to prevent contention on

user mail files. We use 96 client processes regardless of

the number of active cores; as long as there are enough

clients to keep Exim busy, the number of clients has little

effect on performance.

We modified and configured Exim to increase perfor-

mance on both the stock and PK kernels:

• Berkeley DB v4.6 reads /proc/stat to find the number

of cores. This consumed about 20% of the total run-

time, so we modified Berkeley DB to aggressively

cache this information.

• We configured Exim to split incoming queued mes-

sages across 62 spool directories, hashing by the

per-connection process ID. This improves scala-

bility because delivery processes are less likely to

create files in the same directory, which decreases

contention on the directory metadata in the kernel.

• We configured Exim to avoid an exec() per mail

message, using deliver drop privilege.

Figure 4 shows the number of messages Exim can pro-

cess per second on each core, as the number of cores

varies. The stock and PK kernels perform nearly the

same on one core. As the number of cores increases, the

per-core throughput of the stock kernel eventually drops

toward zero. The primary cause of the throughput drop

is contention on a non-scalable kernel spin lock that se-

rializes access to the vfsmount table. Exim causes the

kernel to access the vfsmount table dozens of times for

each message. Exim on PK scales significantly better,

owing primarily to improvements to the vfsmount ta-

ble (Section 4.5) and the changes to the dentry cache

(Section 4.4).

Throughput on the PK kernel degrades from one to

two cores, while the system time increases, because of

the many kernel data structures that are not shared with

one core but must be shared (with cache misses) with

9

Why single-core
Linux performs
relatively better.

The experimental
hardware - cool !

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

Stock
PK

0

50000

100000

150000

200000

250000

300000

1 4 8 12 16 20 24 28 32 36 40 44 48

T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/
se
c
/
co
re
)

Cores

Figure 5: memcached throughput.

two cores. The throughput on the PK kernel continues

to degrade; however, this is mainly due to application-

induced contention on the per-directory locks protecting

file creation in the spool directories. As the number of

cores increases, there is an increasing probability that

Exim processes running on different cores will choose the

same spool directory, resulting in the observed contention.

We foresee a potential bottleneck on more cores due

to cache misses when a per-connection process and the

delivery process it forks run on different cores. When

this happens the delivery process suffers caches misses

when it first accesses kernel data—especially data related

to virtual address mappings—that its parent initialized.

The result is that process destruction, which frees virtual

address mappings, and soft page fault handling, which

reads virtual address mappings, execute more slowly with

more cores. For the Exim configuration we use, however,

this slow down is negligible compared to slow down that

results from contention on spool directories.

5.3 memcached

We run a separate memcached 1.4.4 process on each

core to avoid application lock contention. Each server is

pinned to a separate core and has its own UDP port. Each

client thread repeatedly queries a particular memcached

instance for a non-existent key because this places higher

load on the kernel than querying for existing keys. There

are a total of 792 client threads running on 22 client

machines. Requests are 68 bytes, and responses are 64.

Each client thread sends a batch of 20 requests and waits

for the responses, timing out after 100 ms in case packets

are lost.

For both kernels, we use a separate hardware receive

and transmit queue for each core and configure the

IXGBE to inspect the port number in each incoming

packet header, place the packet on the queue dedicated to

the associated memcached’s core, and deliver the receive

interrupt to that core.

Figure 5 shows that memcached does not scale well on

the stock Linux kernel.

Stock
PK

PK user time
PK system time

0

5000

10000

15000

20000

1 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60

80

100

T
h
ro
u
g
h
p
u
t
(r
eq
u
es
ts
/
se
c
/
co
re
)

C
P
U
ti
m
e
(µ

se
c
/
re
q
u
es
t)

Cores

Figure 6: Apache throughput and runtime breakdown.

One scaling problem occurs in the memory allocator.

Linux associates a separate allocator with each socket to

allocate memory from that chip’s attached DRAM. The

stock kernel allocates each packet from the socket nearest

the PCI bus, resulting in contention on that socket’s allo-

cator. We modified the allocation policy to allocate from

the local socket, which improved throughput by ∼30%.

Another bottleneck was false read/write sharing of

IXGBE device driver data in the net device and

device structures, resulting in cache misses for all cores

even on read-only fields. We rearranged both structures

to isolate critical read-only members to their own cache

lines. Removing a single falsely shared cache line in

net device increased throughput by 30% at 48 cores.

The final bottleneck was contention on the dst entry

structure’s reference count in the network stack’s destina-

tion cache, which we replaced with a sloppy counter (see

Section 4.3).

The “PK” line in Figure 5 shows the scalability of

memcached with these changes. The per core throughput

drops off after 16 cores. We have isolated this bottleneck

to the IXGBE card itself, which appears to handle fewer

packets as the number of virtual queues increases. As a

result, it fails to transmit packets at line rate even though

there are always packets queued in the DMA rings.

To summarize, while memcached scales poorly, the

bottlenecks caused by the Linux kernel were fixable and

the remaining bottleneck lies in the hardware rather than

in the Linux kernel.

5.4 Apache

A single instance of Apache running on stock Linux scales

very poorly because of contention on a mutex protecting

the single accept socket. Thus, for stock Linux, we run

a separate instance of Apache per core with each server

running on a distinct port. Figure 6 shows that Apache

still scales poorly on the stock kernel, even with separate

Apache instances.

For PK, we run a single instance of Apache 2.2.14 on

one TCP port. Apache serves a single static file from an

10

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

ext3 file system; the file resides in the kernel buffer cache.

We serve a file that is 300 bytes because transmitting a

larger file exhausts the available 10 Gbit bandwidth at a

low server core count. Each request involves accepting a

TCP connection, opening the file, copying its content to a

socket, and closing the file and socket; logging is disabled.

We use 58 client processes running on 25 physical client

machines (many clients are themselves multi-core). For

each active server core, each client opens 2 TCP connec-

tions to the server at a time (so, for a 48-core server, each

client opens 96 TCP connections).

All the problems and solutions described in Section 5.3

apply to Apache, as do the modifications to the dentry

cache for both files and sockets described in Section 4.

Apache forks off a process per core, pinning each new pro-

cess to a different core. Each process dedicates a thread

to accepting connections from the shared listening socket

and thus, with the accept queue changes described in Sec-

tion 4.2, each connection is accepted on the core it initially

arrives on and all packet processing is performed local to

that core. The PK numbers in Figure 6 are significantly

better than Apache running on the stock kernel; however,

Apache’s throughput on PK does not scale linearly.

Past 36 cores, performance degrades because the net-

work card cannot keep up with the increasing workload.

Lack of work causes the server idle time to reach 18% at

48 cores. At 48 cores, the network card’s internal diagnos-

tic counters show that the card’s internal receive packet

FIFO overflows. These overflows occur even though the

clients are sending a total of only 2 Gbits and 2.8 million

packets per second when other independent tests have

shown that the card can either receive upwards of 4 Gbits

per second or process 5 million packets per second.

We created a microbenchmark that replicates the

Apache network workload, but uses substantially less

CPU time on the server. In the benchmark, the client ma-

chines send UDP packets as fast as possible to the server,

which also responds with UDP packets. The packet mix

is similar to that of the Apache benchmark. While the mi-

crobenchmark generates far more packets than the Apache

clients, the network card ultimately delivers a similar num-

ber of packets per second as in the Apache benchmark

and drops the rest. Thus, at high core counts, the network

card is unable to deliver additional load to Apache, which

limits its scalability.

5.5 PostgreSQL

We evaluate Linux’s scalability running PostgreSQL 8.3.9

using both a 100% read workload and a 95%/5%

read/write workload. The database consists of a sin-

gle indexed 600 Mbyte table of 10,000,000 key-value

pairs stored in tmpfs. We configure PostgreSQL to use

a 2 Gbyte application-level cache because PostgreSQL

protects its cache free-list with a single lock and thus

Stock
Stock + mod PG
PK + mod PG
PK user time

PK system time

0

5000

10000

15000

20000

25000

1 4 8 12 16 20 24 28 32 36 40 44 48
0

10

20

30

40

50

60

70

80

90

T
h
ro
u
g
h
p
u
t
(q
u
er
ie
s
/
se
c
/
co
re
)

C
P
U
ti
m
e
(µ

se
c
/
q
u
er
y
)

Cores

Figure 7: PostgreSQL read-only workload throughput and runtime

breakdown.

Stock
Stock + mod PG
PK + mod PG
PK user time

PK system time

0

5000

10000

15000

20000

25000

1 4 8 12 16 20 24 28 32 36 40 44 48
0

10

20

30

40

50

60

70

80

90

T
h
ro
u
g
h
p
u
t
(q
u
er
ie
s
/
se
c
/
co
re
)

C
P
U
ti
m
e
(µ

se
c
/
q
u
er
y
)

Cores

Figure 8: PostgreSQL read/write workload throughput and runtime

breakdown.

scales poorly with smaller caches. While we do not pin

the PostgreSQL processes to cores, we do rely on the

IXGBE driver to route packets from long-lived connec-

tions directly to the cores processing those connections.

Our workload generator simulates typical high-

performance PostgreSQL configurations, where middle-

ware on the client machines aggregates multiple client

connections into a small number of connections to the

server. Our workload creates one PostgreSQL connection

per server core and sends queries (selects or updates) in

batches of 256, aggregating successive read-only transac-

tions into single transactions. This workload is intended to

minimize application-level contention within PostgreSQL

in order to maximize the stress PostgreSQL places on the

kernel.

The “Stock” line in Figures 7 and 8 shows that Post-

greSQL has poor scalability on the stock kernel. The first

bottleneck we encountered, which caused the read/write

workload’s total throughput to peak at only 28 cores, was

due to PostgreSQL’s design. PostgreSQL implements

row- and table-level locks atop user-level mutexes; as

a result, even a non-conflicting row- or table-level lock

acquisition requires exclusively locking one of only 16

global mutexes. This leads to unnecessary contention for

non-conflicting acquisitions of the same lock—as seen in

11

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

the read/write workload—and to false contention between

unrelated locks that hash to the same exclusive mutex. We

address this problem by rewriting PostgreSQL’s row- and

table-level lock manager and its mutexes to be lock-free

in the uncontended case, and by increasing the number of

mutexes from 16 to 1024.

The “Stock + mod PG” line in Figures 7 and 8 shows

the results of this modification, demonstrating improved

performance out to 36 cores for the read/write workload.

While performance still collapses at high core counts,

the cause of this has shifted from excessive user time to

excessive system time. The read-only workload is largely

unaffected by the modification as it makes little use of

row- and table-level locks.

With modified PostgreSQL on stock Linux, through-

put for both workloads collapses at 36 cores, with sys-

tem time rising from 1.7 µseconds/query at 32 cores to

322 µseconds/query at 48 cores. The main reason is the

kernel’s lseek implementation. PostgreSQL calls lseek

many times per query on the same two files, which in turn

acquires a mutex on the corresponding inode. Linux’s

adaptive mutex implementation suffers from starvation

under intense contention, resulting in poor performance.

However, the mutex acquisition turns out not to be neces-

sary, and PK eliminates it.

Figures 7 and 8 show that, with PK’s modified lseek

and smaller contributions from other PK changes, Post-

greSQL performance no longer collapses. On PK, Post-

greSQL’s overall scalability is primarily limited by con-

tention for the spin lock protecting the buffer cache page

for the root of the table index. It spends little time in the

kernel, and is not limited by Linux’s performance.

5.6 gmake

We measure the performance of parallel gmake by build-

ing the object files of Linux 2.6.35-rc5 for x86 64. All

input source files reside in the buffer cache, and the output

files are written to tmpfs. We set the maximum number

of concurrent jobs of gmake to twice the number of cores.

Figure 9 shows that gmake on 48 cores achieves ex-

cellent scalability, running 35 times faster on 48 cores

than on one core for both the stock and PK kernels. The

PK kernel shows slightly lower system time owing to the

changes to the dentry cache. gmake scales imperfectly

because of serial stages at the beginning of the build and

straggling processes at the end.

gmake scales so well in part because much of the CPU

time is in the compiler, which runs independently on

each core. In addition, Linux kernel developers have

thoroughly optimized kernel compilation, since it is of

particular importance to them.

5.7 Psearchy/pedsort

Figure 10 shows the runtime for different versions of

pedsort indexing the Linux 2.6.35-rc5 source tree, which

Stock
PK

PK user time
PK system time

0

1

2

3

4

5

6

7

1 4 8 12 16 20 24 28 32 36 40 44 48
0

100

200

300

400

500

600

700

800

T
h
ro
u
g
h
p
u
t
(b
u
il
d
s
/
h
o
u
r
/
co
re
)

C
P
U
ti
m
e
(s
ec

/
b
u
il
d
)

Cores

Figure 9: gmake throughput and runtime breakdown.

Stock + Threads
Stock + Procs

Stock + Procs RR
RR user time

RR system time

0

10

20

30

40

50

1 4 8 12 16 20 24 28 32 36 40 44 48
0

20

40

60

80

100

120

T
h
ro
u
g
h
p
u
t
(j
o
b
s
/
h
o
u
r
/
co
re
)

C
P
U
ti
m
e
(s
ec

/
jo
b
)

Cores

Figure 10: pedsort throughput and runtime breakdown.

consists of 368 Mbyte of text across 33,312 source files.

The input files are in the buffer cache and the output

files are written to tmpfs. Each core uses a 48 Mbyte

word hash table and limits the size of each output index

to 200,000 entries (see Section 3.6). As a result, the

total work performed by pedsort and its final output are

independent of the number of cores involved.

The initial version of pedsort used a single process with

one thread per core. The line marked “Stock + Threads” in

Figure 10 shows that it scales badly. Most of the increase

in runtime is in system time: for 1 core the system time

is 2.3 seconds, while at 48 cores the total system time is

41 seconds.

Threaded pedsort scales poorly because a per-process

kernel mutex serializes calls to mmap and munmap for a

process’ virtual address space. pedsort reads input files

using libc file streams, which access file contents via

mmap, resulting in contention over the shared address

space, even though these memory-mapped files are logi-

cally private to each thread in pedsort. We avoided this

problem by modifying pedsort to use one process per

core for concurrency, eliminating the mmap contention by

eliminating the shared address space. This modification

involved changing about 10 lines of code in pedsort. The

performance of this version on the stock kernel is shown

as “Stock + Procs” in Figure 10. Even on a single core,

12

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

the multi-process version outperforms the threaded ver-

sion because any use of threads forces glibc to use slower,

thread-safe variants of various library functions.

With a small number of cores, the performance of the

process version depends on how many cores share the per-

socket L3 caches. Figure 10’s “Stock + Procs” line shows

performance when the active cores are spread over few

sockets, while the “Stock + Procs RR” shows performance

when the active cores are spread evenly over sockets. As

corroborated by hardware performance counters, the latter

scheme provides higher performance because each new

socket provides access to more total L3 cache space.

Using processes, system time remains small, so the ker-

nel is not a limiting factor. Rather, as the number of cores

increases, pedsort spends more time in the glibc sorting

function msort with tmp, which causes the decreasing

throughput and rising user time in Figure 10. As the num-

ber of cores increases and the total working set size per

socket grows, msort with tmp experiences higher L3

cache miss rates. However, despite its memory demands,

msort with tmp never reaches the DRAM bandwidth

limit. Thus, pedsort is bottlenecked by cache capacity.

5.8 Metis

We measured Metis performance by building an inverted

index from a 2 Gbyte in-memory file. As for Psearchy,

we spread the active cores across sockets and thus have

access to the machine’s full L3 cache space at 8 cores.

The “Stock + 4 KB pages” line in Figure 11 shows

Metis’ original performance. As the number of cores

increases, the per-core performance of Metis decreases.

Metis allocates memory with mmap, which adds the new

memory to a region list but defers modifying page ta-

bles. When a fault occurs on a new mapping, the kernel

locks the entire region list with a read lock. When many

concurrent faults occur on different cores, the lock itself

becomes a bottleneck, because acquiring it even in read

mode involves modifying shared lock state.

We avoided this problem by mapping memory with

2 Mbyte super-pages, rather than 4 Kbyte pages, using

Linux’s hugetlbfs. This results in many fewer page

faults and less contention on the region list lock. We

also used finer-grained locking in place of a global mutex

that serialized super-page faults. The “PK + 2MB pages”

line in Figure 11 shows that use of super-pages increases

performance and significantly reduces system time.

With super-pages, the time spent in the kernel becomes

negligible and Metis’ scalability is limited primarily by

the DRAM bandwidth required by the reduce phase. This

phase is particularly memory-intensive and, at 48 cores,

accesses DRAM at 50.0 Gbyte/second, just shy of the

maximum achievable throughput of 51.5 Gbyte/second

measured by our microbenchmarks.

Stock + 4KB pages
PK + 2MB pages
Stock user time
PK user time

PK system time

0

5

10

15

20

25

30

35

1 4 8 12 16 20 24 28 32 36 40 44 48
0

50

100

150

200

T
h
ro
u
g
h
p
u
t
(j
o
b
s
/
h
o
u
r
/
co
re
)

C
P
U
ti
m
e
(s
ec

/
jo
b
)

Cores

Figure 11: Metis throughput and runtime breakdown.

Application Bottleneck

Exim App: Contention on spool directories

memcached HW: Transmit queues on NIC

Apache HW: Receive queues on NIC

PostgreSQL App: Application-level spin lock

gmake App: Serial stages and stragglers

pedsort HW: Cache capacity

Metis HW: DRAM throughput

Figure 12: Summary of the current bottlenecks in MOSBENCH, at-

tributed either to hardware (HW) or application structure (App).

5.9 Evaluation summary

Figure 3 summarized the significant scalability improve-

ments resulting from our changes. Figure 12 summarizes

the bottlenecks that limit further scalability of MOSBENCH

applications. In each case, the application is bottle-

necked by either shared hardware resources or application-

internal scalability limits. None are limited by Linux-

induced bottlenecks.

6 DISCUSSION

The results from the previous section show that the MOS-

BENCH applications can scale well to 48 cores, with mod-

est changes to the applications and to the Linux kernel.

Different applications or more cores are certain to reveal

more bottlenecks, just as we encountered bottlenecks at

48 cores that were not important at 24 cores. For exam-

ple, the costs of thread and process creation seem likely

to grow with more cores in the case where parent and

child are on different cores. Given our experience scaling

Linux to 48 cores, we speculate that fixing bottlenecks

in the kernel as the number of cores increases will also

require relatively modest changes to the application or

to the Linux kernel. Perhaps a more difficult problem is

addressing bottlenecks in applications, or ones where ap-

plication performance is not bottlenecked by CPU cycles,

but by some other hardware resource, such as DRAM

bandwidth.

Section 5 focused on scalability as a way to increase

performance by exploiting more hardware, but it is usu-

ally also possible to increase performance by exploiting

13

Optimistic !

Thank you, really !

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

a fixed amount of hardware more efficiently. Techniques

that a number of recent multicore research operating sys-

tems have introduced (such as address ranges, dedicating

cores to functions, shared memory for inter-core message

passing, assigning data structures carefully to on-chip

caches, etc. [11, 15, 53]) could apply equally well to

Linux, improving its absolute performance and benefiting

certain applications. In future work, we would like to

explore such techniques in Linux.

One benefit of using Linux for multicore research is that

it comes with many applications and has a large developer

community that is continuously improving it. However,

there are downsides too. For example, if future processors

don’t provide high-performance cache coherence, Linux’s

shared-memory-intensive design may be an impediment

to performance.

7 CONCLUSION

This paper analyzes the scaling behavior of a traditional

operating system (Linux 2.6.35-rc5) on a 48-core com-

puter with a set of applications that are designed for par-

allel execution and use kernel services. We find that we

can remove most kernel bottlenecks that the applications

stress by modifying the applications or kernel slightly.

Except for sloppy counters, most of our changes are ap-

plications of standard parallel programming techniques.

Although our study has a number of limitations (e.g., real

application deployments may be bottlenecked by I/O), the

results suggest that traditional kernel designs may be com-

patible with achieving scalability on multicore comput-

ers. The MOSBENCH applications are publicly available

at http://pdos.csail.mit.edu/mosbench/, so that

future work can investigate this hypothesis further.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,

Brad Chen, for their feedback. This work was partially

supported by Quanta Computer and NSF through award

numbers 0834415 and 0915164. Silas Boyd-Wickizer is

partially supported by a Microsoft Research Fellowship.

Yandong Mao is partially supported by a Jacobs Presi-

dential Fellowship. This material is based upon work

supported under a National Science Foundation Graduate

Research Fellowship.

REFERENCES

[1] Apache HTTP Server, May 2010. http://

httpd.apache.org/.

[2] Exim, May 2010. http://www.exim.org/.

[3] Memcached, May 2010. http://

memcached.org/.

[4] PostreSQL, May 2010. http://

www.postgresql.org/.

[5] The search for fast, scalable counters, May 2010.

http://lwn.net/Articles/170003/.

[6] J. Aas. Understanding the Linux 2.6.8.1

CPU scheduler, February 2005. http://

josh.trancesoftware.com/linux/.

[7] AMD, Inc. Six-core AMD opteron processor

features. http://www.amd.com/us/products/

server/processors/six-core-opteron/

Pages/six-core-opteron-key-architectural

-features.aspx.

[8] T. E. Anderson, B. N. Bershad, E. D. Lazowska,

and H. M. Levy. Scheduler activations: Effective

kernel support for the user-level management of

parallelism. In Proc. of the 13th SOSP, pages 95–

109, 1991.

[9] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,

M. Ostrowski, B. Rosenburg, A. Waterland, R. W.

Wisniewski, J. Xenidis, M. Stumm, and L. Soares.

Experience distributing objects in an SMMP OS.

ACM Trans. Comput. Syst., 25(3):6, 2007.

[10] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,

K. Keutzer, J. Kubiatowicz, N. Morgan, D. Pat-

terson, K. Sen, J. Wawrzynek, D. Wessel, and

K. Yelick. A view of the parallel computing land-

scape. Commun. ACM, 52(10):56–67, 2009.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Haris,

R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and

A. Singhania. The Multikernel: a new OS architec-

ture for scalable multicore systems. In Proc of the

22nd SOSP, Big Sky, MT, USA, Oct 2009.

[12] B. N. Bershad, T. E. Anderson, E. D. Lazowska,

and H. M. Levy. Lightweight remote procedure call.

ACM Trans. Comput. Syst., 8(1):37–55, 1990.

[13] D. L. Black. Scheduling support for concurrency

and parallelism in the Mach operating system. Com-

puter, 23(5):35–43, 1990.

[14] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but

effective techniques for NUMA memory manage-

ment. In Proc. of the 12th SOSP, pages 19–31, New

York, NY, USA, 1989. ACM.

[15] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,

F. Kaashoek, R. Morris, A. Pesterev, L. Stein,

M. Wu, Y. D. Y. Zhang, and Z. Zhang. Corey: An

operating system for many cores. In Proc. of the 8th

OSDI, December 2008.

14

Argument in favour
of improving off the
shelf OS as opposed
to developing a new
one.

Linux forever !

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

andrey

Highlight

[16] R. Bryant, J. Hawkes, J. Steiner, J. Barnes, and

J. Higdon. Scaling linux to the extreme. In Proceed-

ings of the Linux Symposium 2004, pages 133–148,

Ottawa, Ontario, June 2004.

[17] B. Cantrill and J. Bonwick. Real-world concurrency.

Commun. ACM, 51(11):34–39, 2008.

[18] J. Corbet. The lockless page cache, May 2010.

http://lwn.net/Articles/291826/.

[19] A. L. Cox and R. J. Fowler. The implementation of

a coherent memory abstraction on a NUMA multi-

processor: Experiences with platinum. In Proc. of

the 12th SOSP, pages 32–44, 1989.

[20] J. Dean and S. Ghemawat. MapReduce: simplified

data processing on large clusters. Commun. ACM,

51(1):107–113, 2008.

[21] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,

K. Fall, G. Iannaccone, A. Knies, M. Manesh, and

S. Ratnasamy. RouteBricks: Exploiting parallelism

to scale software routers. In Proc of the 22nd SOSP,

Big Sky, MT, USA, Oct 2009.

[22] F. Ellen, Y. Lev, V. Luchango, and M. Moir. SNZI:

Scalable nonzero indicators. In PODC 2007, Port-

land, Oregon, USA, Aug. 2007.

[23] GNU Make, May 2010. http://www.gnu.org/

software/make/.

[24] C. Gough, S. Siddha, and K. Chen. Kernel

scalability—expanding the horizon beyond fine

grain locks. In Proceedings of the Linux Sympo-

sium 2007, pages 153–165, Ottawa, Ontario, June

2007.

[25] T. Herbert. rfs: receive flow steering, September

2010. http://lwn.net/Articles/381955/.

[26] T. Herbert. rps: receive packet steering, September

2010. http://lwn.net/Articles/361440/.

[27] M. Herlihy. Wait-free synchronization. ACM Trans.

Program. Lang. Syst., 13(1):124–149, 1991.

[28] J. Jackson. Multicore requires OS rework

Windows architect advises. PCWorld mag-

azine, 2010. http://www.pcworld.com/

businesscenter/article/191914/

multicore requires os rework windows

architect advises.html.

[29] Z. Jia, Z. Liang, and Y. Dai. Scalability evaluation

and optimization of multi-core SIP proxy server. In

Proc. of the 37th ICPP, pages 43–50, 2008.

[30] A. R. Karlin, K. Li, M. S. Manasse, and S. S. Ow-

icki. Empirical studies of competitive spinning for a

shared-memory multiprocessor. In Proc. of the 13th

SOSP, pages 41–55, 1991.

[31] A. Kleen. An NUMA API for Linux, August

2004. http://www.firstfloor.org/˜andi/

numa.html.

[32] A. Kleen. Linux multi-core scalability. In Proceed-

ings of Linux Kongress, October 2009.

[33] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-

moni, K. Gharachorloo, J. Chapin, D. Nakahira,

J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,

and J. Hennessy. The Stanford FLASH multipro-

cessor. In Proc. of the 21st ISCA, pages 302–313,

1994.

[34] R. P. LaRowe, Jr., C. S. Ellis, and L. S. Kaplan.

The robustness of NUMA memory management. In

Proc. of the 13th SOSP, pages 137–151, 1991.

[35] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek,

D. Karger, and R. Morris. On the feasibility of peer-

to-peer web indexing and search. In Proc. of the 2nd

IPTPS, Berkeley, CA, February 2003.

[36] Linux 2.6.35-rc5 source, July

2010. Documentation/scheduler/

sched-design-CFS.txt.

[37] Linux kernel mailing list, May 2010. http://

kerneltrap.org/node/8059.

[38] Y. Mao, R. Morris, and F. Kaashoek. Optimizing

MapReduce for multicore architectures. Technical

Report MIT-CSAIL-TR-2010-020, MIT, 2010.

[39] P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,

O. Krieger, and R. Russell. Read-copy update. In

Proceedings of the Linux Symposium 2002, pages

338–367, Ottawa, Ontario, June 2002.

[40] P. E. McKenney, D. Sarma, and M. Soni. Scal-

ing dcache with rcu, Jan. 2004. http://

www.linuxjournal.com/article/7124.

[41] J. M. Mellor-Crummey and M. L. Scott. Algorithms

for scalable synchronization on shared-memory mul-

tiprocessors. ACM Trans. Comput. Syst., 9(1):21–65,

1991.

[42] E. M. Nahum, D. J. Yates, J. F. Kurose, and

D. Towsley. Performance issues in parallelized net-

work protocols. In Proc. of the 1st OSDI, page 10,

Berkeley, CA, USA, 1994. USENIX Association.

15

[43] D. Patterson. The parallel revolution has started:

are you part of the solution or the prolem? In

USENIX ATEC, 2008. www.usenix.org/event/

usenix08/tech/slides/patterson.pdf.

[44] A. Pesterev, N. Zeldovich, and R. T. Morris. Lo-

cating cache performance bottlenecks using data

profiling. In Proceedings of the ACM EuroSys Con-

ference (EuroSys 2010), Paris, France, April 2010.

[45] C. Ranger, R. Raghuraman, A. Penmetsa, G. Brad-

ski, and C. Kozyrakis. Evaluating MapReduce for

multi-core and multiprocessor system. In Proceed-

ings of HPCA. IEEE Computer Society, 2007.

[46] C. Schimmel. UNIX systems for modern architec-

tures: symmetric multiprocessing and caching for

kernel programmers. Addison-Wesley, 1994.

[47] M. D. Schroeder and M. Burrows. Performance

of Firefly RPC. In Proc. of the 12th SOSP, pages

83–90, 1989.

[48] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek,

and R. Morris. Overcite: A distributed, cooperative

citeseer. In Proc. of the 3rd NSDI, San Jose, CA,

May 2006.

[49] J. H. Tseng, H. Yu, S. Nagar, N. Dubey, H. Franke,

P. Pattnaik, H. Inoue, and T. Nakatani. Performance

studies of commercial workloads on a multi-core

system. IEEE Workload Characterization Sympo-

sium, pages 57–65, 2007.

[50] R. Vaswani and J. Zahorjan. The implications of

cache affinity on processor scheduling for multipro-

grammed, shared memory multiprocessors. In Proc.

of the 13th SOSP, pages 26–40, 1991.

[51] B. Veal and A. Foong. Performance scalability of

a multi-core web server. In Proceedings of the 3rd

ACM/IEEE Symposium on Architecture for Network-

ing and Communications Systems, pages 57–66,

New York, NY, USA, 2007.

[52] B. Verghese, S. Devine, A. Gupta, and M. Rosen-

blum. Operating system support for improving data

locality on CC-NUMA compute servers. In Proc.

of the 7th ASPLOS, pages 279–289, New York, NY,

USA, 1996. ACM.

[53] D. Wentzlaff and A. Agarwal. Factored operating

systems (fos): the case for a scalable operating

system for multicores. SIGOPS Oper. Syst. Rev.,

43(2):76–85, 2009.

[54] C. Yan, Y. Chen, and S. Yuanchun. Parallel scalabil-

ity comparison of commodity operating systems on
large scale multi-cores. In Proceedings of the work-

shop on the interaction between Operating Systems

and Computer Architecture (WIOSCA 2009).

[55] C. Yan, Y. Chen, and S. Yuanchun. OSMark: A

benchmark suite for understanding parallel scalabil-

ity of operating systems on large scale multi-cores.

In 2009 2nd International Conference on Computer

Science and Information Technology, pages 313–

317, 2009.

[56] C. Yan, Y. Chen, and S. Yuanchun. Scaling OLTP

applications on commodity multi-core platforms.

In 2010 IEEE International Symposium on Perfor-

mance Analysis of Systems & Software (ISPASS),

pages 134–143, 2010.

[57] M. Young, A. Tevanian, R. F. Rashid, D. B. Golub,

J. L. Eppinger, J. Chew, W. J. Bolosky, D. L. Black,

and R. V. Baron. The duality of memory and commu-

nication in the implementation of a multiprocessor

operating system. In Proc. of the 11th SOSP, pages

63–76, 1987.

16

