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Abstract

Spring is a highly modular, distributed, object-oriented
operating system. This paper describes the goals of the
Spring system and provides overviews of the Spring object
model, the security model, and the naming architecture.
Implementation details of the Spring microkernel, virtual
memory system, file system, and UNIX emulation are sup-
plied.

1 Introduction

What would you do if you were given a clean sheet on
which to design a new operating system? Would you make
the new OS look the same as some existing system or dif-
ferent?

If you choose to make it look like UNIX, for example,
then a better implementation had better be a primary goal.
Changing the system as seen by application programs
would, however, be a very bad thing to do, since you are
supposedly making it look the same as UNIX in order to
run existing software. In fact, if you take this route, you
will be strongly pressured to make the new, improved sys-
tem binary compatible with the existing one so that users
can run all their existing software. Any new functionality
that you would like to include would have to be done as a
strict addition to the system’s existing Application Pro-
gramming Interfaces (APIs).

If you choose to make the new system different than any
existing system, then you had better make it such an
improvement over them that programmers will be willing
to learn a new set of APIs to take advantage of its
improved functionality. Indeed, you will have to convince
other companies to adopt and support your new APIs so
that there will be sufficient future sales of systems with the

new APIs to warrant software development investments
by application developers.

Because the opportunity to begin afresh in OS design is
increasingly rare, the Spring project has chosen to be dif-
ferent and to develop the best technology we could. How-
ever, we decided that we would innovate only where we
could achieve large increases over existing systems and
that we would try to keep as many as possible of their
good features.

What are the biggest problems of existing systems? From
Sun’s point of view as a supplier of UNIX system technol-
ogy in our Solaris products, the major issues are:

• the cost of maintaining, evolving, and delivering the
system, including kernel and non-kernel code (e.g.,
window systems),

• a basis for security that is not particularly flexible, easy
to use or strongly secure,

• the difficulty of building distributed, multi-threaded
applications and services,

• the difficulty of supporting time-critical media (audio
and video), especially in a networked environment,

• the lack of a unified way of locating things by name
(e.g., lookup is done differently for files, devices,
users, etc.).

However, we wanted to keep a number of features that
have proven themselves in one or more systems; for exam-
ple,

• good performance on a wide variety of machines,
including multi-processor systems,

• memory protection, virtual memory, and mapped file
systems,

• access to existing systems via application compatibility
and network interoperability (e.g., standard protocols
and services),



• window systems and graphical user interfaces.

Sun’s belief in open systems means that we would like to
include extending the system by more than one vendor as
an important aspect of evolving it.

When we looked at these lists, we immediately decided
that the Spring system should have a strong and explicit
architecture: one that would pay attention to the interfaces
between software components, which is really how a sys-
tem’s structure is expressed. Our architectural goal for
Spring then became

• Spring’s components should be defined by strong
interfaces and it should be open, flexible and extensible

By a strong interface we mean one that specifies what
some software component does while saying very little
about how it is implemented

This way of stating our purpose led us to develop the idea
of an Interface Definition Language (IDL) [15] so that we
could define software interfaces without having to tie our-
selves to a single programming language, which would
have made the system less open. We also believed that the
best way to get many of the system properties we wanted
was to use an object-oriented approach.

The marriage of strong interfaces and object-orientation
has been a natural and powerful one. It helps achieve our
goals of openness, extensibility, easy distributed comput-
ing, and security. In particular, it has made the operation of
invoking an operation on an object one that is type safe,
secure (if desired), and uniform whether the object and its
client are collocated in a single address space or machine
or are remote from one another.

We have used a microkernel approach in concert with IDL
interfaces. The Spring Nucleus (part of the microkernel)
directly supports secure objects with high speed object
invocation between address spaces (and by a system
extension, between networked machines). Almost all of
the system is implemented as a suite of object managers
(e.g., the file system, which provides file objects) running
in non-kernel mode, often in separate address spaces, to
protect themselves from applications (and from one
another). Consequently, it is as easy to add new system
functionality as it is to write an application in Spring, and
all such functionality is inherently part of a distributed
system.

Object managers are themselves objects: for example, a
file system is an object manager that supports an operation
for opening files by name. The file objects that it returns
from open operations are generally implemented as part of
the same object manager because it is convenient and nat-
ural to do so. Because of the similarity of an object man-
ager and the traditional notion of a server (e.g., a file

server), we use the two terms interchangeably in this
paper.

The remainder of this paper will discuss

• IDL,
• the model and implementation of objects in Spring,
• the overall structure of the Spring system,
• the Spring Nucleus,
• the implementations of distributed object invocation,

security, virtual memory, file systems, UNIX compati-
bility, and unified naming.

We will finish by drawing some conclusions from our
experience designing and implementing the system.

2 Interface Definition Language (IDL)

The Interface Definition Language developed by the
Spring project is substantially the same as the IDL that has
been adopted by the Object Management Group as a stan-
dard for defining distributed, object-oriented software
components. As such, IDL “compilers” are or have been
implemented by a number of companies.

What does an IDL compiler do? After all, interfaces are
not supposed to be implementations, so what is there to
compile? Typically, an IDL compiler is used to produce
three pieces of source code in some chosen target imple-
mentation language, e.g., C, C++, Smalltalk, etc.:

1. A language specific form of the IDL interface: For C
and C++ this is a header file with C or C++ definitions
for whatever methods, constants, types, etc. were
defined in the IDL interface. We will give an example
below.

2. Client side stub code: Code meant to be dynamically
linked into a client’s program to access an object that is
implemented in another address space or on another
machine.

3. Server side stub code: Code to be linked into an object
manager to translate incoming remote object invoca-
tions into the run-time environment of the object’s
implementation.

These three outputs from an IDL compiler enable clients
and implementations in a particular language, e.g., C++, to
treat IDL-defined objects as if they were just objects in
C++. Thus, a programmer writing in C++ would use an
IDL-to-C++ compiler to get C++ header files and stub
code to define objects as if they were implemented in C++.
At the same time, the object’s implementation might be
written in C and would, therefore, have used an IDL-to-C
compiler to generate the server side stub code to transform



incoming calls into corresponding C procedure invoca-
tions on the C “objects” corresponding to the IDL objects.

2.1 An example
To give the flavor of IDL, Figure 1 shows an example of
IDL use to define the Spring IO interface. For the purposes
of this overview, details have been elided, but the example
is derived from an actual use of IDL.

The interface defines objects of type IO. In this example,
any IO object has two operations defined on it, read and
write. The read operation takes a parameter, size, of type
long, and returns an object of type raw_data. The write
method returns nothing (void) and takes a single argument,
data, whose type is raw_data.

As noted above, instead of returning normally, a method
may raise one of a number of defined exceptions.

A complete description of IDL is given in [15].

3 Objects in Spring

Although all Spring interfaces are defined in IDL, IDL
says nothing about how operations on an object are imple-
mented, or even how an operation request should be con-
veyed to an object.

The users of an object merely invoke operations defined in
its interface. How and where the operation is actually per-
formed is the responsibility of the object run-time and of
the object implementation. Sometimes the operation will
be performed in the same address space as the client,
sometimes in another address space on the same machine,
sometimes on another machine.

We will often use the phrase “invoke an object” as a short
form for “invoke an operation on an object”.

3.1 Server-based objects
Many objects in Spring are implemented in servers that
are in different address spaces from their clients. We pro-

interface io {
    raw_data read(in long size) raises (access_denied, alerted,
                                                                       failure, end_of_data)

    void write(in raw_data data) raises (access_denied, alerted,
                                             incomplete_write, failure, end_of_data)
};

FIGURE  1. IO Interface in IDL

vide special support for these kinds of objects by automat-
ically generating stubs (see Section 2) which take the
arguments for these calls and marshal them for transmis-
sion to the server and which unmarshal any results and
return these to the client application. These stubs use our
subcontract mechanism (see Section 3.3) to communicate
with the remote server.

Typically, server-based objects use the Spring doors com-
munication mechanism (see section 5.1) to communicate
between the client and the server. Most subcontracts opti-
mize the case when the client and the server happen to be
in the same address space by simply performing a local
call, rather than calling through the kernel.

3.2 Serverless objects
Spring also supports serverless objects, where the entire
state of the object is always in the client’s address space.
This implementation mechanism is suitable for light-
weight objects such as names or raw_data. When a server-
less object is passed between address spaces, the object’s
state is copied to the new address space. Thus passing a
serverless object is more like passing a struct, while pass-
ing a server-based object is more like passing a pointer to
its remote state.
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FIGURE  2. A call on a server-based object
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FIGURE  3. A call on a serverless object



3.3 Subcontract
Spring provides a flexible mechanism for plugging in dif-
ferent kinds of object runtime machinery. This mecha-
nism, known as subcontract, allows control over how
object invocation is implemented, over how object refer-
ences are transmitted between address spaces, how object
references are released, and similar object runtime opera-
tions [2].

For example, the widely used singleton subcontract pro-
vides simple access to objects in other address spaces.
When a client invokes a singleton object, the subcontract
implements the object invocation by transmitting the
request to the address space where the object’s implemen-
tation lives.

We have also implemented subcontracts that support repli-
cation. These subcontracts implement object invocation by
transmitting a request to one or more of a set of servers
that are conspiring to support a replicated object.

In addition we have used subcontract to implement a num-
ber of different object runtime mechanisms, including sup-
port for cheap objects, for caching, and for crash recovery.

4 Overall system structure

Spring is organized as a microkernel system. Running in
kernel mode are the nucleus, which manages processes
and inter-process communication, and the virtual memory
manager, which controls the memory management hard-
ware. The nucleus is entered by a trap mechanism. The
virtual memory manager responds to page faults but also
provides objects that interact with external pagers (see
Section 8.2) and, in this guise, looks like any other object
server.
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FIGURE  4. Major system components of a Spring node
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All other system services, including naming, paging, net-
work IO, filesystems, keyboard management, etc., are
implemented as user-level servers. These servers provide
object-oriented interfaces to the resources they manage
and clients communicate with system servers by invoking
these objects.

Spring is inherently distributed. All the services and
objects available on one node are also available on other
nodes in the same distributed system.

5 The nucleus

The nucleus is Spring’s microkernel. It supports three
basic abstractions: domains, threads, and doors [1].

Domains are analogous to processes in Unix or to tasks in
Mach. They provide an address space for applications to
run in and act as a container for various kinds of applica-
tion resources such as threads and doors.

Threads execute within domains. Typically each Spring
domain is multi-threaded, with separate threads perform-
ing different parts of an application.

Doors support object-oriented calls between domains. A
door describes a particular entry point to a domain, repre-
sented by both a PC and a unique value nominated by the
domain. This unique value is typically used by the object
server to identify the state of the object; e.g., if the imple-
mentation is written in C++ it might be a pointer to a C++
object.

5.1 Doors
Doors are pieces of protected nucleus state. Each domain
has a table of the doors to which it has access. A domain
refers to doors using door identifiers, which are mapped
through the domain’s door table into actual doors. A given
door may be referenced by several different door identifi-
ers in several different domains.

Possession of a valid door gives the possessor the right to
send an invocation request to the given door.

A valid door can only be obtained with the consent of the
target domain or with the consent of someone who already
has a door identifier for the same door.

As far as the target domain is concerned, all invocations
on a given door are equivalent. It is only aware that the
invoker has somehow acquired an appropriate door identi-
fier. It does not know who the invoker is or which door
identifier they have used.



5.2 Object Invocation Via Doors
Using doors, Spring provides a highly efficient mechanism
for cross-address-space object invocation. A thread in one
address space can issue a door invocation for an object in
another address space. The nucleus allocates a server
thread in the target address space and quickly transfers
control to that thread, passing it information associated
with the door plus the argument data passed by the calling
thread.

When the called thread wishes to return, the nucleus deac-
tivates the calling thread and reactivates the caller thread,
passing it any return data specified by the called thread.

For a call with minimal arguments, Spring can execute a
low-level cross-address-space door call in 11 µs on a
SPARCstation 2, which is significantly faster than using
more general purpose inter-process communication mech-
anisms [1].

Doors can be passed as arguments or results of calls. The
nucleus will create appropriate door table entries for the
given doors in the recipient’s door table and give the recip-
ient door identifiers for them.

6 Network Proxies

To provide object invocation across the network, the
nucleus invocation mechanism is extended by network
proxies that connect up the nuclei of different machines in
a transparent way. These proxies are normal user-mode
server domains and receive no special support from the
nucleus. One Spring machine might include several proxy
domains that speak different network protocols.
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FIGURE  5. Domains, doors, and door tables

Proxies transparently forward door invocations between
domains on different machines. In Figure 6, when a client
on machine B invokes door Y, this door invocation goes to
network proxy B; B forwards the call over the net to its
buddy, proxy A; proxy A does a door invocation; and the
door invocation then arrives in the server domain.

Notice that neither the client nor the server need be aware
that the proxies exist. The client just performs a normal
door invocation, the server just sees a normal incoming
door invocation.

Door identifiers are mapped into network handles when
they are transmitted over the network, and are mapped
back into doors when they are received from the network.

A network handle contains a network address for the cre-
ating proxy, and a set of bits to identify a particular door
that is exported by this proxy. In theory the set of bits is
large enough to make it hard for a malicious user to guess
the value of a network handle, thereby providing protec-
tion against users forging network handles.

7 Spring’s security model

One of Spring’s goals is to provide secure access to
objects, so that object implementations can control access
to particular data or services. To provide security we sup-
port two basic mechanisms, Access Control Lists and soft-
ware capabilities.

Any object can support an Access Control List (ACL) that
defines which users of groups of users are allowed access
to that object. These Access Control Lists can be checked
at runtime to determine whether a given client is really
allowed to access a given object.

When a given client proves that it is allowed to access a
given object, the object’s server creates an object reference
that acts as a software capability. This object reference
uses a nucleus door as part of its representation so that it
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FIGURE  6. Using proxies to forward a call between machines



cannot be forged by a malicious user. This door points to a
front object inside the server. A front object is not a Spring
object, but rather whatever the server’s language of imple-
mentation defines an object to be.

A front object encapsulates information identifying the
principal (e.g., a user) to which the software capability
was issued and the access rights granted to that principal.

A given server may create many different front objects,
encapsulating different access rights, all pointing to the
same piece of underlying state. Later, when the client
issues an object invocation on the object reference, the
invocation request is transmitted securely through the
nucleus door and delivered to the front object. The front
object then checks that the request is permissible based on
the encapsulated access rights, and if so, forwards the
request into the server. For example, if the client issued an
update request, the front object would check that the
encapsulated access included write access.

When a client is given an object reference that is acting as
a capability they can pass that object reference on to other
clients. These other clients can then use the object refer-
ence freely and will receive all the access that was granted
to the original client.

For example, say that user X has a file object foo, which
has a restricted access control list specifying that only X is
allowed to read the file. However X would like to print the
file on a printserver P. P is not on the ACL for foo, so it
would not normally have access to foo’s data. However, X
can obtain an object reference that will act as a software
capability, encapsulating the read access that X is allowed
to foo. X can then pass that object reference on to the
printserver P and P will be able to read the file.
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FIGURE  7. A client accessing a secure object

The use of software capabilities in Spring makes it easy
for application programs to pass objects to servers in a
way that allows the server to actually use the given object.

8 Virtual Memory

Spring implements an extensible, demand-paged virtual
memory system that separates the functionality of caching
pages from the tasks of storing and retrieving pages [7].

8.1 Overview
A per-machine virtual memory manager (VMM) handles
mapping, sharing, protecting, transferring, and caching of
local memory. The VMM depends on external pagers for
accessing backing store and maintaining inter-machine
coherency.

Most clients of the virtual memory system only deal with
address space and memory objects. An address space
object represents the virtual address space of a Spring
domain while a memory object is an abstraction of mem-
ory that can be mapped into address spaces. An example
of a memory object is a file object (the file interface in
Spring inherits from the memory object interface).
Address space objects are implemented by the VMM.

A memory object has operations to set and query the
length, and an operation to bind to the object (see Section
8.2). There are no page-in/out or read/write operations on
memory objects. The Spring file interface provides file
read/write operations (but not page-in/page-out opera-
tions). Separating the memory abstraction from the inter-
face that provides the paging operations is a feature of the
Spring virtual memory system that we found very useful
in implementing our file system [13]. This separation
enables the memory object server to be in a different

memory objects

address space

FIGURE  8. User’s view of address spaces

An address space is a linear range of addresses with regions
mapped to memory objects. Each region is mapped to a (part
of) a memory object. Each page within a mapped region may
be mapped with read/write/execute permissions and may be
locked in memory.



machine than the pager object server which provides the
contents of the memory object.

8.2 Cache and Pager Objects
In order to allow data to be coherently cached by more
than one VMM, there needs to be a two-way connection
between the VMM and an external pager (e.g., a file
server). The VMM needs a connection to the external
pager to allow the VMM to obtain and write out data, and
the external pager needs a connection to the VMM to
allow the provider to perform coherency actions (e.g., to
invalidate data cached by the VMM). We represent this
two-way connection as two objects.

The VMM obtains data by invoking a pager object imple-
mented by an external pager, and an external pager per-
forms coherency actions by invoking a cache object
implemented by a VMM.

When a VMM is asked to map a memory object into an
address space, the VMM must be able to obtain a pager
object to allow it to manipulate the object’s data. Associ-
ated with this pager object must be a cache object that the
external pager can use for coherency.

A VMM wants to ensure that two equivalent memory
objects (e.g., two memory objects that refer to the same
file on disk), when mapped, will share the data cached by
the VMM. To do this, the VMM invokes a bind operation
on the memory object. The bind operation returns a cach-
e_rights object, which is always implemented by the
VMM itself. If two equivalent memory objects are
mapped, then the same cache_rights object will be
returned. The VMM uses the returned object to find a
pager-cache object connection to use, and to find any
pages cached for the memory object.

When a memory object receives a bind operation from a
VMM, it must determine if there is already a pager-cache
object connection for the memory object at the given
VMM. If there is no connection, the external pager imple-
menting the memory object contacts the VMM, and the
VMM and the external pager exchange pager, cache, and
cache_rights objects. Once the connection is set up, the
memory object returns the appropriate cache_rights object
to the VMM.

Typically, there are many pager-cache object channels
between a given pager and a VMM (see Figure 9 for an
example).

8.3 Maintaining Data Coherency
The task of maintaining data coherency between different
VMMs that are caching a memory object is the responsi-

bility of the external pager implementing the memory
object. The coherency protocol is not specified by the
architecture—external pagers are free to implement what-
ever coherency protocol they wish. The cache and pager
object interfaces provide basic building blocks for con-
structing the coherency protocol. Our current external
pager implementations use a single-writer/multiple-reader
per-block coherency protocol [12, 13].

9 File System

The file system architecture defines file objects that are
implemented by file servers. The file object interface
inherits from the memory object and io interfaces. There-
fore, file objects may be memory mapped (because they
are also memory objects), and they can also be accessed
using the read/write operations of the io interface.

Spring includes file systems giving access to files on local
disks as well as over the network. Each file system uses
the Spring security and naming architectures to provide
access control and directory services.

A Spring file system typically consists of several layered
file servers [5]. The pager-cache object paradigm is used
by file systems as a general layering mechanism between
the different file servers and virtual memory managers.
Among other things, this has enabled us to provide per-
machine caching of data and attributes to decrease the
number of network accesses for remote files.

VMM 1 VMM 2

FIGURE  9. Pager-cache object example
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9.1 File Server Implementations
The Spring Storage File System (SFS) is implemented
using two layers as shown in Figure 10.

The base disk layer implements an on-disk Unix compati-
ble file system. It does not, however, implement a coher-
ency algorithm. Instead, an instance of the coherency file
server is stacked on the disk layer, and all files are
exported to clients via the coherency layer.

The coherency layer implements a per-block multiple-
reader/single-writer coherency protocol. Among other
things, the implementation keeps track of the state of each
file block (read-only vs. read-write) and of each cache
object that holds the block at any point in time. Coherency
actions are triggered depending on the state and the cur-
rent request using a single-writer/multiple-reader per-
block coherency algorithm. The coherency layer also
caches file attributes.

The Caching File System (CFS) is an attribute-caching file
system. Its main function is to interpose itself between
remote files and local clients when they are passed to the
local machine so as to increase the efficiency of many
operations. Once interposed on, all calls to remote files
end up being diverted to the local CFS.

An interesting aspect of CFS is the manner in which it
dynamically interposes on individual remote DFS files. A
caching subcontract is used to contact the local CFS in the
process of unmarshalling file objects. When CFS is asked
to interpose on a file, it becomes a cache manager for the
remote file by invoking the bind operation on the file as
described in Section 8.2.

10 Spring Naming

An operating system has various kinds of objects that need
to be given names, such as users, files, printers, machines,
services, etc. Most operating systems provide several
name services, each tailored for a specific kind of object.
Such type specific name services are usually built into the
subsystem implementing those objects. For example, file
systems typically implement their own naming service for
naming files (directories).

FIGURE  10. Spring SFS

Coherency layer

Disk layer

SFS

All files are

Disk drive

exported by
coherency
layer

In contrast, Spring provides a uniform name service [17].
In principle, any object can be bound to any name. This
applies whether the object is local to a process, local to a
machine, or resident elsewhere on the network, whether it
is transient or persistent; whether it is a standard system
object, a process environment object, or a user specific
object. Name services and name spaces do not need to be
segregated by object type. Different name spaces can be
composed to create new name spaces.

By using a common name service, we avoid burdening cli-
ents with the requirement to use different names or differ-
ent name services depending on what objects are being
accessed. Similarly, we avoid burdening all object imple-
mentations with constructing name spaces—the name ser-
vice provides critical support to integrate new kinds of
objects and new implementations of existing objects into
Spring. Object implementations maintain control over the
representation and storage of their objects, who is allowed
access to them, and other crucial details. Although Spring
has a common name service and naming interface, the
architecture allows different name servers with different
implementation properties to be used as part of the name
service.

The name service allows an object to be associated with a
name in a context, an object that contains a set of name–
to–object associations, or name bindings, and which is
used by clients to perform all naming operations. An
object may be bound to several different names in possibly
several different contexts at the same time. Indeed, an
object need not be bound to a name at all.

By binding contexts in other contexts we can create a
naming graph (informally called a name space), a directed
graph with nodes and labeled edges, where the nodes with
outgoing edges are contexts.

Unlike naming in traditional systems, Spring contexts and
name spaces are first class objects: they can be accessed
and manipulated directly. For example, two applications
can exchange and share a private name space. Tradition-
ally, such applications would have had to build their own
naming facility, or incorporate the private name space into
a larger system–wide name space, and access it indirectly
via the root or working context.

Since Spring objects are not persistent by default, naming
is used to provide persistence [16]. It is expected that
applications generally will (re)acquire objects from the
name service. If the part of the name space in which the
object is found is persistent, then the object will have been
made persistent also.

A Spring name server managing a persistent part of a
name space converts objects to and from their persistent



form (much like the UNIX file system, which converts
open files to and from their persistent form). However,
since naming is a generic service for an open–ended col-
lection of object types, a context cannot be expected to
know how to make each object type persistent. Spring
object managers have ultimate control of the (hidden)
states of their objects. Therefore we provide a general
interface between object managers and the name service
that allows persistence to be integrated into the name ser-
vice while allowing the implementation to control how its
(hidden) objects’ states are mapped to and from a persis-
tent representation.

Because the name service is the most common mechanism
for acquiring objects, it is a natural place for access control
and authentication. Since the name service must provide
these functions to protect the name space, it is reasonable
to use the same mechanism to protect named objects. The
naming architecture allows object managers to determine
how much to trust a particular name server, and an object
manager is permitted to forego the convenience and
implement its own access control and authentication if it
wishes. Similarly, name servers can choose to trust or not
to trust other name servers.

The Spring name service does not prescribe particular
naming policies; different policies can be built on the top.
Our current policy is to provide a combination of system-
supplied shared name spaces, per-user name spaces, and
per-domain name spaces that can be customized by attach-
ing name spaces from different parts of the distributed
environment.

By default, at start-up each domain is passed from its par-
ent a private domain name space, which incorporates the
user and system name spaces. A domain can acquire other
name spaces and contexts if it desires.

11 UNIX Emulation

Spring can run Solaris binaries using the UNIX emulation
subsystem [6]. It is implemented entirely by user-level
code, employs no actual UNIX code, and provides binary
compatibility for a large set of Solaris programs. The sub-
system uses services already provided by the underlying
Spring system and only implements UNIX-specific fea-
tures that have no counterpart in Spring (e.g., signals). No
modifications to the base Spring system were necessary to
implement Solaris emulation.

The implementation consists of two components: a shared
library (libue.so) that is dynamically linked with each
Solaris binary, and a set of UNIX-specific services

exported via Spring objects implemented by a UNIX pro-
cess server (in a separate domain). See Figure 4.

The UNIX process server implements functions that are
not part of the Spring base system and which cannot reside
in libue.so due to security reasons.

11.1 Libue
When a program is execed, libue.so is dynamically linked
with the application image in place of libc, thus enabling
the application to run unchanged.

The libue.so library encapsulates some of the functionality
that normally resides in a monolithic UNIX kernel. In par-
ticular, it delivers signals forwarded by the UNIX process
server, and keeps track of the association between UNIX
file descriptor numbers (fd’s) and Spring file objects.

For each UNIX system call, we implemented a library
stub. In general, there are three kinds of calls:

1. Calls that simply take as an argument an fd, parse any
passed flags, and invoke a Spring service (e.g., read,
write, and mmap). Most file system and virtual mem-
ory operations fall in this category.

2. Calls that eventually call a UNIX-specific service in
the UNIX process server. Examples include pipe and
kill.

3. Calls that change the local state without calling any
other domain. Dup, parts of fcntl, and many signal han-
dling calls fall into this category.

11.2 UNIX Process Server
The UNIX process server maintains the parent-child rela-
tionship among processes, keeps track of process and
group ids, provides sockets and pipes, and forwards sig-
nals.

The UNIX process server is involved in forking and exec-
ing of new processes. It is also involved in forwarding (but
not delivering signals). Since it keeps track of process and
group ids, it enforces UNIX security semantics when ser-
vicing requests from client processes.

12 Conclusions

The Spring project chose to build a different operating sys-
tem, one based on the notions of strong interfaces, open-
ness and extensibility and designed to be distributed and
suited to multiprocessors. Using object-oriented ideas and
strong interfaces has been a natural fit, with a number of
benefits:



• A standardized basis for open, distributed object sys-
tems via the Interface Definition Language and a sim-
ple client model for objects

• Easy distributed services and applications
• Readily extensible system facilities, such as file sys-

tems and name services
• Unity of architecture together with a wide range of

implementation opportunities as in virtual memory
management, naming, subcontract, and serverless
objects

• Highly efficient inter-address space object invocation
in support of a microkernel-based architecture.

Finally, designing in security mechanisms from the start
has provided a system that can support a wide range of
secure mechanisms in a networked environment, from the
most relaxed to the most secure.
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ABSTRACT


This paper analyzes the scalability of seven system appli-


cations (Exim, memcached, Apache, PostgreSQL, gmake,


Psearchy, and MapReduce) running on Linux on a 48-


core computer. Except for gmake, all applications trigger


scalability bottlenecks inside a recent Linux kernel. Us-


ing mostly standard parallel programming techniques—


this paper introduces one new technique, sloppy coun-


ters—these bottlenecks can be removed from the kernel


or avoided by changing the applications slightly. Modify-


ing the kernel required in total 3002 lines of code changes.


A speculative conclusion from this analysis is that there


is no scalability reason to give up on traditional operating


system organizations just yet.


1 INTRODUCTION


There is a sense in the community that traditional kernel


designs won’t scale well on multicore processors: that


applications will spend an increasing fraction of their time


in the kernel as the number of cores increases. Promi-


nent researchers have advocated rethinking operating sys-


tems [10, 28, 43] and new kernel designs intended to al-


low scalability have been proposed (e.g., Barrelfish [11],


Corey [15], and fos [53]). This paper asks whether tradi-


tional kernel designs can be used and implemented in a


way that allows applications to scale.


This question is difficult to answer conclusively, but


we attempt to shed a small amount of light on it. We


analyze scaling a number of system applications on


Linux running with a 48-core machine. We examine


Linux because it has a traditional kernel design, and be-


cause the Linux community has made great progress in


making it scalable. The applications include the Exim


mail server [2], memcached [3], Apache serving static


files [1], PostgreSQL [4], gmake [23], the Psearchy file


indexer [35, 48], and a multicore MapReduce library [38].


These applications, which we will refer to collectively


as MOSBENCH, are designed for parallel execution and


stress many major Linux kernel components.


Our method for deciding whether the Linux kernel


design is compatible with application scalability is as


follows. First we measure scalability of the MOSBENCH


applications on a recent Linux kernel (2.6.35-rc5, released


July 12, 2010) with 48 cores, using the in-memory tmpfs


file system to avoid disk bottlenecks. gmake scales well,


but the other applications scale poorly, performing much


less work per core with 48 cores than with one core. We


attempt to understand and fix the scalability problems, by


modifying either the applications or the Linux kernel. We


then iterate, since fixing one scalability problem usually


exposes further ones. The end result for each applica-


tion is either good scalability on 48 cores, or attribution


of non-scalability to a hard-to-fix problem with the ap-


plication, the Linux kernel, or the underlying hardware.


The analysis of whether the kernel design is compatible


with scaling rests on the extent to which our changes to


the Linux kernel turn out to be modest, and the extent


to which hard-to-fix problems with the Linux kernel ulti-


mately limit application scalability.


As part of the analysis, we fixed three broad kinds of


scalability problems for MOSBENCH applications: prob-


lems caused by the Linux kernel implementation, prob-


lems caused by the applications’ user-level design, and


problems caused by the way the applications use Linux


kernel services. Once we identified a bottleneck, it typi-


cally required little work to remove or avoid it. In some


cases we modified the application to be more parallel, or


to use kernel services in a more scalable fashion, and in


others we modified the kernel. The kernel changes are all


localized, and typically involve avoiding locks and atomic


instructions by organizing data structures in a distributed


fashion to avoid unnecessary sharing. One reason the


required changes are modest is that stock Linux already


incorporates many modifications to improve scalability.


More speculatively, perhaps it is the case that Linux’s


system-call API is well suited to an implementation that


avoids unnecessary contention over kernel objects.


The main contributions of this paper are as follows.


The first contribution is a set of 16 scalability improve-


ments to the Linux 2.6.35-rc5 kernel, resulting in what we


refer to as the patched kernel, PK. A few of the changes


rely on a new idea, which we call sloppy counters, that


has the nice property that it can be used to augment shared


counters to make some uses more scalable without having


to change all uses of the shared counter. This technique


is particularly effective in Linux because typically only


a few uses of a given shared counter are scalability bot-


tlenecks; sloppy counters allow us to replace just those


few uses without modifying the many other uses in the


kernel. The second contribution is a set of application
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benchmarks, MOSBENCH, to measure scalability of op-


erating systems, which we make publicly available. The


third is a description of the techniques required to im-


prove the scalability of the MOSBENCH applications. Our


final contribution is an analysis using MOSBENCH that


suggests that there is no immediate scalability reason to


give up on traditional kernel designs.


The rest of the paper is organized as follows. Section 2


relates this paper to previous work. Section 3 describes


the applications in MOSBENCH and what operating sys-


tem components they stress. Section 4 summarizes the


differences between the stock and PK kernels. Section 5


reports on the scalability of MOSBENCH on the stock


Linux 2.6.35-rc5 kernel and the PK kernel. Section 6


discusses the implications of the results. Section 7 sum-


marizes this paper’s conclusions.


2 RELATED WORK


There is a long history of work in academia and industry


to scale Unix-like operating systems on shared-memory


multiprocessors. Research projects such as the Stanford


FLASH [33] as well as companies such as IBM, Se-


quent, SGI, and Sun have produced shared-memory ma-


chines with tens to hundreds processors running variants


of Unix. Many techniques have been invented to scale


software for these machines, including scalable locking


(e.g., [41]), wait-free synchronization (e.g., [27]), mul-


tiprocessor schedulers (e.g., [8, 13, 30, 50]), memory


management (e.g., [14, 19, 34, 52, 57]), and fast message


passing using shared memory (e.g., [12, 47]). Textbooks


have been written about adapting Unix for multiproces-


sors (e.g., [46]). These techniques have been incorporated


in current operating systems such as Linux, Mac OS X,


Solaris, and Windows. Cantrill and Bonwick summarize


the historical context and real-world experience [17].


This paper extends previous scalability studies by ex-


amining a large set of systems applications, by using a


48-core PC platform, and by detailing a particular set of


problems and solutions in the context of Linux. These


solutions follow the standard parallel programming tech-


nique of factoring data structures so that each core can


operate on separate data when sharing is not required, but


such that cores can share data when necessary.


Linux scalability improvements. Early multiproces-


sor Linux kernels scaled poorly with kernel-intensive par-


allel workloads because the kernel used coarse-granularity


locks for simplicity. Since then the Linux commu-


nity has redesigned many kernel subsystems to im-


prove scalability (e.g., Read-Copy-Update (RCU) [39],


local run queues [6], libnuma [31], and improved


load-balancing support [37]). The Linux symposium


(www.linuxsymposium.org) features papers related to


scalability almost every year. Some of the redesigns are


based on the above-mentioned research, and some com-


panies, such as IBM and SGI [16], have contributed code


directly. Kleen provides a brief history of Linux kernel


modifications for scaling and reports some areas of poor


scalability in a recent Linux version (2.6.31) [32]. In this


paper, we identify additional kernel scaling problems and


describes how to address them.


Linux scalability studies. Gough et al. study the scal-


ability of Oracle Database 10g running on Linux 2.6.18


on dual-core Intel Itanium processors [24]. The study


finds problems with the Linux run queue, slab alloca-


tor, and I/O processing. Cui et al. uses the TPCC-UVa


and Sysbench-OLTP benchmarks with PostgreSQL to


study the scalability of Linux 2.6.25 on an Intel 8-core


system [56], and finds application-internal bottlenecks


as well as poor kernel scalability in System V IPC. We


find that these problems have either been recently fixed


by the Linux community or are a consequence of fixable


problems in PostgreSQL.


Veal and Foong evaluate the scalability of Apache run-


ning on Linux 2.6.20.3 on an 8-core AMD Opteron com-


puter using SPECweb2005 [51]. They identify Linux scal-


ing problems in the kernel implementations of scheduling


and directory lookup, respectively. On a 48-core com-


puter, we also observe directory lookup as a scalability


problem and PK applies a number of techniques to ad-


dress this bottleneck. Pesterev et al. identify scalability


problems in the Linux 2.6.30 network code using mem-


cached and Apache [44]. The PK kernel addresses these


problems by using a modern network card that supports a


large number of virtual queues (similar to the approach


taken by Route Bricks [21]).


Cui et al. describe microbenchmarks for measuring


multicore scalability and report results from running them


on Linux on a 32-core machine [55]. They find a number


of scalability problems in Linux (e.g., memory-mapped


file creation and deletion). Memory-mapped files show


up as a scalability problem in one MOSBENCH application


when multiple threads run in the same address space with


memory-mapped files.


A number of new research operating systems use scal-


ability problems in Linux as motivation. The Corey pa-


per [15] identified bottlenecks in the Linux file descriptor


and virtual memory management code caused by unneces-


sary sharing. Both of these bottlenecks are also triggered


by MOSBENCH applications. The Barrelfish paper [11]


observed that Linux TLB shootdown scales poorly. This


problem is not observed in the MOSBENCH applications.


Using microbenchmarks, the fos paper [53] finds that the


physical page allocator in Linux 2.6.24.7 does not scale


beyond 8 cores and that executing the kernel and applica-


tions on the same core results in cache interference and


high miss rates. We find that the page allocator isn’t a


bottleneck for MOSBENCH applications on 48 cores (even


though they stress memory allocation), though we have
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reason to believe it would be a problem with more cores.


However, the problem appears to be avoidable by, for


example, using super-pages or modifying the kernel to


batch page allocation.


Solaris scalability studies. Solaris provides a UNIX


API and runs on SPARC-based and x86-based multi-


core processors. Solaris incorporates SNZIs [22], which


are similar to sloppy counters (see section 4.3). Tseng


et al. report that SAP-SD, IBM Trade and several syn-


thetic benchmarks scale well on an 8-core SPARC system


running Solaris 10 [49]. Zou et al. encountered coarse


grained locks in the UDP networking stack of Solaris


10 that limited scalability of the OpenSER SIP proxy


server on an 8-core SPARC system [29]. Using the mi-


crobenchmarks mentioned above [55], Cui et al. compare


FreeBSD, Linux, and Solaris [54], and find that Linux


scales better on some microbenchmarks and Solaris scales


better on others. We ran some of the MOSBENCH appli-


cations on Solaris 10 on the 48-core machine used for


this paper. While the Solaris license prohibits us from re-


porting quantitative results, we observed similar or worse


scaling behavior compared to Linux; however, we don’t


know the causes or whether Solaris would perform better


on SPARC hardware. We hope, however, that this paper


helps others who might analyze Solaris.


3 THE MOSBENCH APPLICATIONS


To stress the kernel we chose two sets of applications:


1) applications that previous work has shown not to


scale well on Linux (memcached; Apache; and Metis, a


MapReduce library); and 2) applications that are designed


for parallel execution and are kernel intensive (gmake,


PostgreSQL, Exim, and Psearchy). Because many ap-


plications are bottlenecked by disk writes, we used an


in-memory tmpfs file system to explore non-disk limita-


tions. We drive some of the applications with synthetic


user workloads designed to cause them to use the ker-


nel intensively, with realism a secondary consideration.


This collection of applications stresses important parts


of many kernel components (e.g., the network stack, file


name cache, page cache, memory manager, process man-


ager, and scheduler). Most spend a significant fraction


of their CPU time in the kernel when run on a single


core. All but one encountered serious scaling problems


at 48 cores caused by the stock Linux kernel. The rest of


this section describes the selected applications, how they


are parallelized, and what kernel services they stress.


3.1 Mail server


Exim [2] is a mail server. We operate it in a mode where


a single master process listens for incoming SMTP con-


nections via TCP and forks a new process for each con-


nection, which in turn accepts the incoming mail, queues


it in a shared set of spool directories, appends it to the


per-user mail file, deletes the spooled mail, and records


the delivery in a shared log file. Each per-connection pro-


cess also forks twice to deliver each message. With many


concurrent client connections, Exim has a good deal of


parallelism. It spends 69% of its time in the kernel on


a single core, stressing process creation and small file


creation and deletion.


3.2 Object cache


memcached [3] is an in-memory key-value store often


used to improve web application performance. A single


memcached server running on multiple cores is bottle-


necked by an internal lock that protects the key-value hash


table. To avoid this problem, we run multiple memcached


servers, each on its own port, and have clients determin-


istically distribute key lookups among the servers. This


organization allows the servers to process requests in par-


allel. When request sizes are small, memcached mainly


stresses the network stack, spending 80% of its time pro-


cessing packets in the kernel at one core.


3.3 Web server


Apache [1] is a popular Web server, which previous work


(e.g., [51]) has used to study Linux scalability. We run a


single instance of Apache listening on port 80. We config-


ure this instance to run one process per core. Each process


has a thread pool to service connections; one thread is


dedicated to accepting incoming connections while the


other threads process the connections. In addition to the


network stack, this configuration stresses the file system


(in particular directory name lookup) because it stats and


opens a file on every request. Running on a single core,


an Apache process spends 60% of its execution time in


the kernel.


3.4 Database


PostgreSQL [4] is a popular open source SQL database,


which, unlike many of our other workloads, makes exten-


sive internal use of shared data structures and synchro-


nization. PostgreSQL also stresses many shared resources


in the kernel: it stores database tables as regular files


accessed concurrently by all PostgreSQL processes, it


starts one process per connection, it makes use of kernel


locking interfaces to synchronize and load balance these


processes, and it communicates with clients over TCP


sockets that share the network interface.


Ideally, PostgreSQL would scale well for read-mostly


workloads, despite its inherent synchronization needs.


PostgreSQL relies on snapshot isolation, a form of opti-


mistic concurrency control that avoids most read locks.


Furthermore, most write operations acquire only row-


level locks exclusively and acquire all coarser-grained


locks in shared modes. Thus, in principle, PostgreSQL


should exhibit little contention for read-mostly workloads.


In practice, PostgreSQL is limited by bottlenecks in both
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its own code and in the kernel. For a read-only work-


load that avoids most application bottlenecks, PostgreSQL


spends only 1.5% of its time in the kernel with one core,


but this grows to 82% with 48 cores.


3.5 Parallel build


gmake [23] is an implementation of the standard make


utility that supports executing independent build rules


concurrently. gmake is the unofficial default benchmark


in the Linux community since all developers use it to


build the Linux kernel. Indeed, many Linux patches


include comments like “This speeds up compiling the


kernel.” We benchmarked gmake by building the stock


Linux 2.6.35-rc5 kernel with the default configuration


for x86 64. gmake creates more processes than there are


cores, and reads and writes many files. The execution


time of gmake is dominated by the compiler it runs, but


system time is not negligible: with one core, 7.6% of the


execution time is system time.


3.6 File indexer


Psearchy is a parallel version of searchy [35, 48], a pro-


gram to index and query Web pages. We focus on the


indexing component of searchy because it is more system


intensive. Our parallel version, pedsort, runs the searchy


indexer on each core, sharing a work queue of input files.


Each core operates in two phases. In phase 1, it pulls input


files off the work queue, reading each file and recording


the positions of each word in a per-core hash table. When


the hash table reaches a fixed size limit, it sorts it alpha-


betically, flushes it to an intermediate index on disk, and


continues processing input files. Phase 1 is both compute


intensive (looking up words in the hash table and sorting


it) and file-system intensive (reading input files and flush-


ing the hash table). To avoid stragglers in phase 1, the


initial work queue is sorted so large files are processed


first. Once the work queue is empty, each core merges


the intermediate index files it produced, concatenating the


position lists of words that appear in multiple intermedi-


ate indexes, and generates a binary file that records the


positions of each word and a sequence of Berkeley DB


files that map each word to its byte offset in the binary


file. To simplify the scalability analysis, each core starts


a new Berkeley DB every 200,000 entries, eliminating


a logarithmic factor and making the aggregate work per-


formed by the indexer constant regardless of the number


of cores. Unlike phase 1, phase 2 is mostly file-system


intensive. While pedsort spends only 1.9% of its time


in the kernel at one core, this grows to 23% at 48 cores,


indicating scalability limitations.


3.7 MapReduce


Metis is a MapReduce [20] library for single multicore


servers inspired by Phoenix [45]. We use Metis with an


application that generates inverted indices. This workload


allocates large amounts of memory to hold temporary


tables, stressing the kernel memory allocator and soft page


fault code. This workload spends 3% of its runtime in the


kernel with one core, but this rises to 16% at 48 cores.


4 KERNEL OPTIMIZATIONS


The MOSBENCH applications trigger a few scalability


bottlenecks in the kernel. We describe the bottlenecks


and our solutions here, before presenting detailed per-


application scaling results in Section 5, because many


of the bottlenecks are common to multiple applications.


Figure 1 summarizes the bottlenecks. Some of these prob-


lems have been discussed on the Linux kernel mailing


list and solutions proposed; perhaps the reason these solu-


tions have not been implemented in the standard kernel is


that the problems are not acute on small-scale SMPs or


are masked by I/O delays in many applications. Figure 1


also summarizes our solution for each bottleneck.


4.1 Scalability tutorial


Why might one expect performance to scale well with the


number of cores? If a workload consists of an unlimited


supply of tasks that do not interact, then you’d expect to


get linear increases in total throughput by adding cores


and running tasks in parallel. In real life parallel tasks


usually interact, and interaction usually forces serial ex-


ecution. Amdahl’s Law summarizes the result: however


small the serial portion, it will eventually prevent added


cores from increasing performance. For example, if 25%


of a program is serial (perhaps inside some global locks),


then any number of cores can provide no more than 4-


times speedup.


Here are a few types of serializing interactions that


the MOSBENCH applications encountered. These are all


classic considerations in parallel programming, and are


discussed in previous work such as [17].


• The tasks may lock a shared data structure, so that


increasing the number of cores increases the lock


wait time.


• The tasks may write a shared memory location, so


that increasing the number of cores increases the


time spent waiting for the cache coherence proto-


col to fetch the cache line in exclusive mode. This


problem can occur even in lock-free shared data


structures.


• The tasks may compete for space in a limited-size


shared hardware cache, so that increasing the number


of cores increases the cache miss rate. This problem


can occur even if tasks never share memory.


• The tasks may compete for other shared hardware


resources such as inter-core interconnect or DRAM
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Parallel accept Apache


Concurrent accept system calls contend on shared socket fields. ⇒ User per-core backlog queues for listening sockets.


dentry reference counting Apache, Exim


File name resolution contends on directory entry reference counts. ⇒ Use sloppy counters to reference count directory entry objects.


Mount point (vfsmount) reference counting Apache, Exim


Walking file name paths contends on mount point reference counts. ⇒ Use sloppy counters for mount point objects.


IP packet destination (dst entry) reference counting memcached, Apache


IP packet transmission contends on routing table entries. ⇒ Use sloppy counters for IP routing table entries.


Protocol memory usage tracking memcached, Apache


Cores contend on counters for tracking protocol memory consumption. ⇒ Use sloppy counters for protocol usage counting.


Acquiring directory entry (dentry) spin locks Apache, Exim


Walking file name paths contends on per-directory entry spin locks. ⇒ Use a lock-free protocol in dlookup for checking filename matches.


Mount point table spin lock Apache, Exim


Resolving path names to mount points contends on a global spin lock. ⇒ Use per-core mount table caches.


Adding files to the open list Apache, Exim


Cores contend on a per-super block list that tracks open files. ⇒ Use per-core open file lists for each super block that has open files.


Allocating DMA buffers memcached, Apache


DMA memory allocations contend on the memory node 0 spin lock. ⇒ Allocate Ethernet device DMA buffers from the local memory node.


False sharing in net device and device memcached, Apache, PostgreSQL


False sharing causes contention for read-only structure fields. ⇒ Place read-only fields on their own cache lines.


False sharing in page Exim


False sharing causes contention for read-mostly structure fields. ⇒ Place read-only fields on their own cache lines.


inode lists memcached, Apache


Cores contend on global locks protecting lists used to track inodes. ⇒ Avoid acquiring the locks when not necessary.


Dcache lists memcached, Apache


Cores contend on global locks protecting lists used to track dentrys. ⇒ Avoid acquiring the locks when not necessary.


Per-inode mutex PostgreSQL


Cores contend on a per-inode mutex in lseek. ⇒ Use atomic reads to eliminate the need to acquire the mutex.


Super-page fine grained locking Metis


Super-page soft page faults contend on a per-process mutex. ⇒ Protect each super-page memory mapping with its own mutex.


Zeroing super-pages Metis


Zeroing super-pages flushes the contents of on-chip caches. ⇒ Use non-caching instructions to zero the contents of super-pages.


Figure 1: A summary of Linux scalability problems encountered by MOSBENCH applications and their corresponding fixes. The fixes add 2617 lines


of code to Linux and remove 385 lines of code from Linux.


interfaces, so that additional cores spend their time


waiting for those resources rather than computing.


• There may be too few tasks to keep all cores busy,


so that increasing the number of cores leads to more


idle cores.


Many scaling problems manifest themselves as delays


caused by cache misses when a core uses data that other


cores have written. This is the usual symptom both for


lock contention and for contention on lock-free mutable


data. The details depend on the hardware cache coherence


protocol, but the following is typical. Each core has a


data cache for its own use. When a core writes data that


other cores have cached, the cache coherence protocol


forces the write to wait while the protocol finds the cached


copies and invalidates them. When a core reads data


that another core has just written, the cache coherence


protocol doesn’t return the data until it finds the cache that


holds the modified data, annotates that cache to indicate


there is a copy of the data, and fetches the data to the


reading core. These operations take about the same time


as loading data from off-chip RAM (hundreds of cycles),


so sharing mutable data can have a disproportionate effect


on performance.


Exercising the cache coherence machinery by modify-


ing shared data can produce two kinds of scaling problems.


First, the cache coherence protocol serializes modifica-


tions to the same cache line, which can prevent parallel


speedup. Second, in extreme cases the protocol may


saturate the inter-core interconnect, again preventing addi-


tional cores from providing additional performance. Thus


good performance and scalability often demand that data


be structured so that each item of mutable data is used by


only one core.


In many cases scaling bottlenecks limit performance


to some maximum, regardless of the number of cores. In


other cases total throughput decreases as the number of


cores grows, because each waiting core slows down the


cores that are making progress. For example, non-scalable


spin locks produce per-acquire interconnect traffic that is


proportional to the number of waiting cores; this traffic


may slow down the core that holds the lock by an amount


proportional to the number of waiting cores [41]. Acquir-
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ing a Linux spin lock takes a few cycles if the acquiring


core was the previous lock holder, takes a few hundred


cycles if another core last held the lock and there is no


contention, and are not scalable under contention.


Performance is often the enemy of scaling. One way


to achieve scalability is to use inefficient algorithms, so


that each core busily computes and makes little use of


shared resources such as locks. Conversely, increasing


the efficiency of software often makes it less scalable, by


increasing the fraction of time it uses shared resources.


This effect occurred many times in our investigations of


MOSBENCH application scalability.


Some scaling bottlenecks cannot easily be fixed, be-


cause the semantics of the shared resource require serial


access. However, it is often the case that the implementa-


tion can be changed so that cores do not have to wait for


each other. For example, in the stock Linux kernel the set


of runnable threads is partitioned into mostly-private per-


core scheduling queues; in the common case, each core


only reads, writes, and locks its own queue [36]. Many


scaling modifications to Linux follow this general pattern.


Many of our scaling modifications follow this same


pattern, avoiding both contention for locks and contention


for the underlying data. We solved other problems using


well-known techniques such as lock-free protocols or fine-


grained locking. In all cases we were able to eliminate


scaling bottlenecks with only local changes to the kernel


code. The following subsections explain our techniques.


4.2 Multicore packet processing


The Linux network stack connects different stages of


packet processing with queues. A received packet typ-


ically passes through multiple queues before finally ar-


riving at a per-socket queue, from which the application


reads it with a system call like read or accept. Good


performance with many cores and many independent net-


work connections demands that each packet, queue, and


connection be handled by just one core [21, 42]. This


avoids inter-core cache misses and queue locking costs.


Recent Linux kernels take advantage of network cards


with multiple hardware queues, such as Intel’s 82599


10Gbit Ethernet (IXGBE) card, or use software tech-


niques, such as Receive Packet Steering [26] and Receive


Flow Steering [25], to attempt to achieve this property.


With a multi-queue card, Linux can be configured to as-


sign each hardware queue to a different core. Transmit


scaling is then easy: Linux simply places outgoing pack-


ets on the hardware queue associated with the current


core. For incoming packets, such network cards provide


an interface to configure the hardware to enqueue incom-


ing packets matching a particular criteria (e.g., source IP


address and port number) on a specific queue and thus


to a particular core. This spreads packet processing load


across cores. However, the IXGBE driver goes further:


for each core, it samples every 20th outgoing TCP packet


and updates the hardware’s flow directing tables to de-


liver further incoming packets from that TCP connection


directly to the core.


This design typically performs well for long-lived con-


nections, but poorly for short ones. Because the technique


is based on sampling, it is likely that the majority of


packets on a given short connection will be misdirected,


causing cache misses as Linux delivers to the socket on


one core while the socket is used on another. Furthermore,


because few packets are received per short-lived connec-


tion, misdirecting even the initial handshake packet of a


connection imposes a significant cost.


For applications like Apache that simultaneously ac-


cept connections on all cores from the same listening


socket, we address this problem by allowing the hard-


ware to determine which core and thus which application


thread will handle an incoming connection. We modify


accept to prefer connections delivered to the local core’s


queue. Then, if the application processes the connection


on the same core that accepted it (as in Apache), all pro-


cessing for that connection will remain entirely on one


core. Our solution has the added benefit of addressing


contention on the lock that protects the single listening


socket’s connection backlog queue.


To implement this, we configured the IXGBE to direct


each packet to a queue (and thus core) using a hash of the


packet headers designed to deliver all of a connection’s


packets (including the TCP handshake packets) to the


same core. We then modified the code that handles TCP


connection setup requests to queue requests on a per-core


backlog queue for the listening socket, so that a thread


will accept and process connections that the IXGBE di-


rects to the core running that thread. If accept finds the


current core’s backlog queue empty, it attempts to steal


a connection request from a different core’s queue. This


arrangement provides high performance for short connec-


tions by processing each connection entirely on one core.


If threads were to move from core to core while handling


a single connection, a combination of this technique and


the current sampling approach might be best.


4.3 Sloppy counters


Linux uses shared counters for reference-counted garbage


collection and to manage various resources. These coun-


ters can become bottlenecks if many cores update them.


In these cases lock-free atomic increment and decrement


instructions do not help, because the coherence hardware


serializes the operations on a given counter.


The MOSBENCH applications encountered bottle-


necks from reference counts on directory entry objects


(dentrys), mounted file system objects (vfsmounts), net-


work routing table entries (dst entrys), and counters
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Figure 2: An example of the kernel using a sloppy counter for dentry


reference counting. A large circle represents a local counter, and a gray


dot represents a held reference. In this figure, a thread on core 0 first


acquires a reference from the central counter. When the thread releases


this reference, it adds the reference to the local counter. Finally, another


thread on core 0 is able to acquire the spare reference without touching


the central counter.


tracking the amount of memory allocated by each net-


work protocol (such as TCP or UDP).


Our solution, which we call sloppy counters, builds on


the intuition that each core can hold a few spare references


to an object, in hopes that it can give ownership of these


references to threads running on that core, without having


to modify the global reference count. More concretely,


a sloppy counter represents one logical counter as a sin-


gle shared central counter and a set of per-core counts


of spare references. When a core increments a sloppy


counter by V , it first tries to acquire a spare reference


by decrementing its per-core counter by V . If the per-


core counter is greater than or equal to V , meaning there


are sufficient local references, the decrement succeeds.


Otherwise the core must acquire the references from the


central counter, so it increments the shared counter by


V . When a core decrements a sloppy counter by V , it


releases these references as local spare references, incre-


menting its per-core counter by V . Figure 2 illustrates


incrementing and decrementing a sloppy counter. If the


local count grows above some threshold, spare references


are released by decrementing both the per-core count and


the central count.


Sloppy counters maintain the invariant that the sum


of per-core counters and the number of resources in use


equals the value in the shared counter. For example, a


shared dentry reference counter equals the sum of the


per-core counters and the number of references to the


dentry currently in use.


A core usually updates a sloppy counter by modifying


its per-core counter, an operation which typically only


needs to touch data in the core’s local cache (no waiting


for locks or cache-coherence serialization).


We added sloppy counters to count references to


dentrys, vfsmounts, and dst entrys, and used sloppy


counters to track the amount of memory allocated by


each network protocol (such as TCP and UDP). Only


uses of a counter that cause contention need to be mod-


ified, since sloppy counters are backwards-compatible


with existing shared-counter code. The kernel code that


creates a sloppy counter allocates the per-core counters.


It is occasionally necessary to reconcile the central and


per-core counters, for example when deciding whether an


object can be de-allocated. This operation is expensive,


so sloppy counters should only be used for objects that


are relatively infrequently de-allocated.


Sloppy counters are similar to Scalable NonZero Indi-


cators (SNZI) [22], distributed counters [9], and approxi-


mate counters [5]. All of these techniques speed up incre-


ment/decrement by use of per-core counters, and require


significantly more work to find the true total value. Sloppy


counters are attractive when one wishes to improve the


performance of some uses of an existing counter without


having to modify all points in the code where the counter


is used. A limitation of sloppy counters is that they use


space proportional to the number of cores.


4.4 Lock-free comparison


We found situations in which MOSBENCH applications


were bottlenecked by low scalability for name lookups


in the directory entry cache. The directory entry cache


speeds up lookups by mapping a directory and a file name


to a dentry identifying the target file’s inode. When


a potential dentry is located, the lookup code acquires


a per-dentry spin lock to atomically compare several


fields of the dentry with the arguments of the lookup


function. Even though the directory cache has been op-


timized using RCU for scalability [40], the dentry spin


lock for common parent directories, such as /usr, was


sometimes a bottleneck even if the path names ultimately


referred to different files.


We optimized dentry comparisons using a lock-free


protocol similar to Linux’ lock-free page cache lookup


protocol [18]. The lock-free protocol uses a generation


counter, which the PK kernel increments after every mod-


ification to a directory entry (e.g., mv foo bar). During


a modification (when the dentry spin lock is held), PK


temporarily sets the generation counter to 0. The PK ker-


nel compares dentry fields to the arguments using the


following procedure for atomicity:


• If the generation counter is 0, fall back to the lock-


ing protocol. Otherwise remember the value of the


generation counter.


• Copy the fields of the dentry to local variables. If


the generation afterwards differs from the remem-


bered value, fall back to the locking protocol.


• Compare the copied fields to the arguments. If there


is a match, increment the reference count unless it is


0, and return the dentry. If the reference count is 0,


fall back to the locking protocol.
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The lock-free protocol improves scalability because it


allows cores to perform lookups for the same directory


entries without serializing.


4.5 Per-core data structures


We encountered three kernel data structures that caused


scaling bottlenecks due to lock contention: a per-super-


block list of open files that determines whether a read-


write file system can be remounted read-only, a table of


mount points used during path lookup, and the pool of


free packet buffers. Though each of these bottlenecks is


caused by lock contention, bottlenecks would remain if


we replaced the locks with finer grained locks or a lock


free protocol, because multiple cores update the data struc-


tures. Therefore our solutions refactor the data structures


so that in the common case each core uses different data.


We split the per-super-block list of open files into per-


core lists. When a process opens a file the kernel locks


the current core’s list and adds the file. In most cases


a process closes the file on the same core it opened it


on. However, the process might have migrated to another


core, in which case the file must be expensively removed


from the list of the original core. When the kernel checks


if a file system can be remounted read-only it must lock


and scan all cores’ lists.


We also added per-core vfsmount tables, each acting


as a cache for a central vfsmount table. When the kernel


needs to look up the vfsmount for a path, it first looks in


the current core’s table, then the central table. If the latter


succeeds, the result is added to the per-core table.


Finally, the default Linux policy for machines with


NUMA memory is to allocate packet buffers (skbuffs)


from a single free list in the memory system closest to the


I/O bus. This caused contention for the lock protecting


the free list. We solved this using per-core free lists.


4.6 Eliminating false sharing


We found some MOSBENCH applications caused false


sharing in the kernel. In the cases we identified, the ker-


nel located a variable it updated often on the same cache


line as a variable it read often. The result was that cores


contended for the falsely shared line, limiting scalabil-


ity. Exim per-core performance degraded because of false


sharing of physical page reference counts and flags, which


the kernel located on the same cache line of a page vari-


able. memcached, Apache, and PostgreSQL faced simi-


lar false sharing problems with net device and device


variables. In all cases, placing the heavily modified data


on a separate cache line improved scalability.


4.7 Avoiding unnecessary locking


For small numbers of cores, lock contention in Linux


does not limit scalability for MOSBENCH applications.


With more than 16 cores, the scalability of memcached,


Apache, PostgreSQL, and Metis are limited by waiting for


Stock
PK


0


0.2


0.4


0.6


0.8


1


Exim memcached Apache PostgreSQL gmake pedsort Metis


P
er
-c
o
re


th
ro
u
g
h
p
u
t
at
4
8
co
re
s
re
la
ti
v
e
to


1
co
re


Figure 3: MOSBENCH results summary. Each bar shows the ratio of


per-core throughput with 48 cores to throughput on one core, with 1.0


indicating perfect scalability. Each pair of bars corresponds to one


application before and after our kernel and application modifications.


and acquiring spin locks and mutexes1 in the file system


and virtual memory management code. In many cases we


were able to eliminate acquisitions of the locks altogether


by modifying the code to detect special cases when ac-


quiring the locks was unnecessary. In one case, we split


a mutex protecting all the super page mappings into one


mutex per mapping.


5 EVALUATION


This section evaluates the MOSBENCH applications on


the most recent Linux kernel at the time of writing


(Linux 2.6.35-rc5, released on July 12, 2010) and our


modified version of this kernel, PK. For each applica-


tion, we describe how the stock kernel limits scalability,


and how we addressed the bottlenecks by modifying the


application and taking advantage of the PK changes.


Figure 3 summarizes the results of the MOSBENCH


benchmark, comparing application scalability before and


after our modifications. A bar with height 1.0 indicates


perfect scalability (48 cores yielding a speedup of 48).


Most of the applications scale significantly better with


our modifications. All of them fall short of perfect scal-


ability even with those modifications. As the rest of this


section explains, the remaining scalability bottlenecks are


not the fault of the kernel. Instead, they are caused by


non-parallelizable components in the application or un-


derlying hardware: resources that the application’s design


requires it to share, imperfect load balance, or hardware


bottlenecks such as the memory system or the network


card. For this reason, we conclude that the Linux ker-


nel with our modifications is consistent with MOSBENCH


scalability up to 48 cores.


For each application we show scalability plots in the


same format, which shows throughput per core (see, for


example, Figure 4). A horizontal line indicates perfect


1A thread initially busy waits to acquire a mutex, but if the wait time


is long the thread yields the CPU.
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scalability: each core contributes the same amount of


work regardless of the total number of cores. In practice


one cannot expect a truly horizontal line: a single core


usually performs disproportionately well because there


is no inter-core sharing and because Linux uses a stream-


lined lock scheme with just one core, and the per-chip


caches become less effective as more active cores share


them. For most applications we see the stock kernel’s line


drop sharply because of kernel bottlenecks, and the PK


line drop more modestly.


5.1 Method


We run the applications that modify files on a tmpfs in-


memory file system to avoid waiting for disk I/O. The


result is that MOSBENCH stresses the kernel more it would


if it had to wait for the disk, but that the results are not


representative of how the applications would perform


in a real deployment. For example, a real mail server


would probably be bottlenecked by the need to write each


message durably to a hard disk. The purpose of these


experiments is to evaluate the Linux kernel’s multicore


performance, using the applications to generate a reason-


ably realistic mix of system calls.


We run experiments on a 48-core machine, with a Tyan


Thunder S4985 board and an M4985 quad CPU daughter-


board. The machine has a total of eight 2.4 GHz 6-core


AMDOpteron 8431 chips. Each core has private 64 Kbyte


instruction and data caches, and a 512 Kbyte private L2


cache. The cores on each chip share a 6 Mbyte L3 cache,


1 Mbyte of which is used for the HT Assist probe fil-


ter [7]. Each chip has 8 Gbyte of local off-chip DRAM.


A core can access its L1 cache in 3 cycles, its L2 cache in


14 cycles, and the shared on-chip L3 cache in 28 cycles.


DRAM access latencies vary, from 122 cycles for a core


to read from its local DRAM to 503 cycles for a core to


read from the DRAM of the chip farthest from it on the


interconnect. The machine has a dual-port Intel 82599


10Gbit Ethernet (IXGBE) card, though we use only one


port for all experiments. That port connects to an Ethernet


switch with a set of load-generating client machines.


Experiments that use fewer than 48 cores run with


the other cores entirely disabled. memcached, Apache,


Psearchy, and Metis pin threads to cores; the other ap-


plications do not. We run each experiment 3 times and


show the best throughput, in order to filter out unrelated


activity; we found the variation to be small.


5.2 Exim


To measure the performance of Exim 4.71, we configure


Exim to use tmpfs for all mutable files—spool files, log


files, and user mail files—and disable DNS and RFC1413


lookups. Clients run on the same machine as Exim. Each


repeatedly opens an SMTP connection to Exim, sends 10


separate 20-byte messages to a local user, and closes the


SMTP connection. Sending 10 messages per connection
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Figure 4: Exim throughput and runtime breakdown.


prevents exhaustion of TCP client port numbers. Each


client sends to a different user to prevent contention on


user mail files. We use 96 client processes regardless of


the number of active cores; as long as there are enough


clients to keep Exim busy, the number of clients has little


effect on performance.


We modified and configured Exim to increase perfor-


mance on both the stock and PK kernels:


• Berkeley DB v4.6 reads /proc/stat to find the number


of cores. This consumed about 20% of the total run-


time, so we modified Berkeley DB to aggressively


cache this information.


• We configured Exim to split incoming queued mes-


sages across 62 spool directories, hashing by the


per-connection process ID. This improves scala-


bility because delivery processes are less likely to


create files in the same directory, which decreases


contention on the directory metadata in the kernel.


• We configured Exim to avoid an exec() per mail


message, using deliver drop privilege.


Figure 4 shows the number of messages Exim can pro-


cess per second on each core, as the number of cores


varies. The stock and PK kernels perform nearly the


same on one core. As the number of cores increases, the


per-core throughput of the stock kernel eventually drops


toward zero. The primary cause of the throughput drop


is contention on a non-scalable kernel spin lock that se-


rializes access to the vfsmount table. Exim causes the


kernel to access the vfsmount table dozens of times for


each message. Exim on PK scales significantly better,


owing primarily to improvements to the vfsmount ta-


ble (Section 4.5) and the changes to the dentry cache


(Section 4.4).


Throughput on the PK kernel degrades from one to


two cores, while the system time increases, because of


the many kernel data structures that are not shared with


one core but must be shared (with cache misses) with
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Figure 5: memcached throughput.


two cores. The throughput on the PK kernel continues


to degrade; however, this is mainly due to application-


induced contention on the per-directory locks protecting


file creation in the spool directories. As the number of


cores increases, there is an increasing probability that


Exim processes running on different cores will choose the


same spool directory, resulting in the observed contention.


We foresee a potential bottleneck on more cores due


to cache misses when a per-connection process and the


delivery process it forks run on different cores. When


this happens the delivery process suffers caches misses


when it first accesses kernel data—especially data related


to virtual address mappings—that its parent initialized.


The result is that process destruction, which frees virtual


address mappings, and soft page fault handling, which


reads virtual address mappings, execute more slowly with


more cores. For the Exim configuration we use, however,


this slow down is negligible compared to slow down that


results from contention on spool directories.


5.3 memcached


We run a separate memcached 1.4.4 process on each


core to avoid application lock contention. Each server is


pinned to a separate core and has its own UDP port. Each


client thread repeatedly queries a particular memcached


instance for a non-existent key because this places higher


load on the kernel than querying for existing keys. There


are a total of 792 client threads running on 22 client


machines. Requests are 68 bytes, and responses are 64.


Each client thread sends a batch of 20 requests and waits


for the responses, timing out after 100 ms in case packets


are lost.


For both kernels, we use a separate hardware receive


and transmit queue for each core and configure the


IXGBE to inspect the port number in each incoming


packet header, place the packet on the queue dedicated to


the associated memcached’s core, and deliver the receive


interrupt to that core.


Figure 5 shows that memcached does not scale well on


the stock Linux kernel.
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Figure 6: Apache throughput and runtime breakdown.


One scaling problem occurs in the memory allocator.


Linux associates a separate allocator with each socket to


allocate memory from that chip’s attached DRAM. The


stock kernel allocates each packet from the socket nearest


the PCI bus, resulting in contention on that socket’s allo-


cator. We modified the allocation policy to allocate from


the local socket, which improved throughput by ∼30%.


Another bottleneck was false read/write sharing of


IXGBE device driver data in the net device and


device structures, resulting in cache misses for all cores


even on read-only fields. We rearranged both structures


to isolate critical read-only members to their own cache


lines. Removing a single falsely shared cache line in


net device increased throughput by 30% at 48 cores.


The final bottleneck was contention on the dst entry


structure’s reference count in the network stack’s destina-


tion cache, which we replaced with a sloppy counter (see


Section 4.3).


The “PK” line in Figure 5 shows the scalability of


memcached with these changes. The per core throughput


drops off after 16 cores. We have isolated this bottleneck


to the IXGBE card itself, which appears to handle fewer


packets as the number of virtual queues increases. As a


result, it fails to transmit packets at line rate even though


there are always packets queued in the DMA rings.


To summarize, while memcached scales poorly, the


bottlenecks caused by the Linux kernel were fixable and


the remaining bottleneck lies in the hardware rather than


in the Linux kernel.


5.4 Apache


A single instance of Apache running on stock Linux scales


very poorly because of contention on a mutex protecting


the single accept socket. Thus, for stock Linux, we run


a separate instance of Apache per core with each server


running on a distinct port. Figure 6 shows that Apache


still scales poorly on the stock kernel, even with separate


Apache instances.


For PK, we run a single instance of Apache 2.2.14 on


one TCP port. Apache serves a single static file from an
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ext3 file system; the file resides in the kernel buffer cache.


We serve a file that is 300 bytes because transmitting a


larger file exhausts the available 10 Gbit bandwidth at a


low server core count. Each request involves accepting a


TCP connection, opening the file, copying its content to a


socket, and closing the file and socket; logging is disabled.


We use 58 client processes running on 25 physical client


machines (many clients are themselves multi-core). For


each active server core, each client opens 2 TCP connec-


tions to the server at a time (so, for a 48-core server, each


client opens 96 TCP connections).


All the problems and solutions described in Section 5.3


apply to Apache, as do the modifications to the dentry


cache for both files and sockets described in Section 4.


Apache forks off a process per core, pinning each new pro-


cess to a different core. Each process dedicates a thread


to accepting connections from the shared listening socket


and thus, with the accept queue changes described in Sec-


tion 4.2, each connection is accepted on the core it initially


arrives on and all packet processing is performed local to


that core. The PK numbers in Figure 6 are significantly


better than Apache running on the stock kernel; however,


Apache’s throughput on PK does not scale linearly.


Past 36 cores, performance degrades because the net-


work card cannot keep up with the increasing workload.


Lack of work causes the server idle time to reach 18% at


48 cores. At 48 cores, the network card’s internal diagnos-


tic counters show that the card’s internal receive packet


FIFO overflows. These overflows occur even though the


clients are sending a total of only 2 Gbits and 2.8 million


packets per second when other independent tests have


shown that the card can either receive upwards of 4 Gbits


per second or process 5 million packets per second.


We created a microbenchmark that replicates the


Apache network workload, but uses substantially less


CPU time on the server. In the benchmark, the client ma-


chines send UDP packets as fast as possible to the server,


which also responds with UDP packets. The packet mix


is similar to that of the Apache benchmark. While the mi-


crobenchmark generates far more packets than the Apache


clients, the network card ultimately delivers a similar num-


ber of packets per second as in the Apache benchmark


and drops the rest. Thus, at high core counts, the network


card is unable to deliver additional load to Apache, which


limits its scalability.


5.5 PostgreSQL


We evaluate Linux’s scalability running PostgreSQL 8.3.9


using both a 100% read workload and a 95%/5%


read/write workload. The database consists of a sin-


gle indexed 600 Mbyte table of 10,000,000 key-value


pairs stored in tmpfs. We configure PostgreSQL to use


a 2 Gbyte application-level cache because PostgreSQL


protects its cache free-list with a single lock and thus
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Figure 7: PostgreSQL read-only workload throughput and runtime


breakdown.
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Figure 8: PostgreSQL read/write workload throughput and runtime


breakdown.


scales poorly with smaller caches. While we do not pin


the PostgreSQL processes to cores, we do rely on the


IXGBE driver to route packets from long-lived connec-


tions directly to the cores processing those connections.


Our workload generator simulates typical high-


performance PostgreSQL configurations, where middle-


ware on the client machines aggregates multiple client


connections into a small number of connections to the


server. Our workload creates one PostgreSQL connection


per server core and sends queries (selects or updates) in


batches of 256, aggregating successive read-only transac-


tions into single transactions. This workload is intended to


minimize application-level contention within PostgreSQL


in order to maximize the stress PostgreSQL places on the


kernel.


The “Stock” line in Figures 7 and 8 shows that Post-


greSQL has poor scalability on the stock kernel. The first


bottleneck we encountered, which caused the read/write


workload’s total throughput to peak at only 28 cores, was


due to PostgreSQL’s design. PostgreSQL implements


row- and table-level locks atop user-level mutexes; as


a result, even a non-conflicting row- or table-level lock


acquisition requires exclusively locking one of only 16


global mutexes. This leads to unnecessary contention for


non-conflicting acquisitions of the same lock—as seen in
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the read/write workload—and to false contention between


unrelated locks that hash to the same exclusive mutex. We


address this problem by rewriting PostgreSQL’s row- and


table-level lock manager and its mutexes to be lock-free


in the uncontended case, and by increasing the number of


mutexes from 16 to 1024.


The “Stock + mod PG” line in Figures 7 and 8 shows


the results of this modification, demonstrating improved


performance out to 36 cores for the read/write workload.


While performance still collapses at high core counts,


the cause of this has shifted from excessive user time to


excessive system time. The read-only workload is largely


unaffected by the modification as it makes little use of


row- and table-level locks.


With modified PostgreSQL on stock Linux, through-


put for both workloads collapses at 36 cores, with sys-


tem time rising from 1.7 µseconds/query at 32 cores to


322 µseconds/query at 48 cores. The main reason is the


kernel’s lseek implementation. PostgreSQL calls lseek


many times per query on the same two files, which in turn


acquires a mutex on the corresponding inode. Linux’s


adaptive mutex implementation suffers from starvation


under intense contention, resulting in poor performance.


However, the mutex acquisition turns out not to be neces-


sary, and PK eliminates it.


Figures 7 and 8 show that, with PK’s modified lseek


and smaller contributions from other PK changes, Post-


greSQL performance no longer collapses. On PK, Post-


greSQL’s overall scalability is primarily limited by con-


tention for the spin lock protecting the buffer cache page


for the root of the table index. It spends little time in the


kernel, and is not limited by Linux’s performance.


5.6 gmake


We measure the performance of parallel gmake by build-


ing the object files of Linux 2.6.35-rc5 for x86 64. All


input source files reside in the buffer cache, and the output


files are written to tmpfs. We set the maximum number


of concurrent jobs of gmake to twice the number of cores.


Figure 9 shows that gmake on 48 cores achieves ex-


cellent scalability, running 35 times faster on 48 cores


than on one core for both the stock and PK kernels. The


PK kernel shows slightly lower system time owing to the


changes to the dentry cache. gmake scales imperfectly


because of serial stages at the beginning of the build and


straggling processes at the end.


gmake scales so well in part because much of the CPU


time is in the compiler, which runs independently on


each core. In addition, Linux kernel developers have


thoroughly optimized kernel compilation, since it is of


particular importance to them.


5.7 Psearchy/pedsort


Figure 10 shows the runtime for different versions of


pedsort indexing the Linux 2.6.35-rc5 source tree, which
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Figure 9: gmake throughput and runtime breakdown.
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Figure 10: pedsort throughput and runtime breakdown.


consists of 368 Mbyte of text across 33,312 source files.


The input files are in the buffer cache and the output


files are written to tmpfs. Each core uses a 48 Mbyte


word hash table and limits the size of each output index


to 200,000 entries (see Section 3.6). As a result, the


total work performed by pedsort and its final output are


independent of the number of cores involved.


The initial version of pedsort used a single process with


one thread per core. The line marked “Stock + Threads” in


Figure 10 shows that it scales badly. Most of the increase


in runtime is in system time: for 1 core the system time


is 2.3 seconds, while at 48 cores the total system time is


41 seconds.


Threaded pedsort scales poorly because a per-process


kernel mutex serializes calls to mmap and munmap for a


process’ virtual address space. pedsort reads input files


using libc file streams, which access file contents via


mmap, resulting in contention over the shared address


space, even though these memory-mapped files are logi-


cally private to each thread in pedsort. We avoided this


problem by modifying pedsort to use one process per


core for concurrency, eliminating the mmap contention by


eliminating the shared address space. This modification


involved changing about 10 lines of code in pedsort. The


performance of this version on the stock kernel is shown


as “Stock + Procs” in Figure 10. Even on a single core,
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the multi-process version outperforms the threaded ver-


sion because any use of threads forces glibc to use slower,


thread-safe variants of various library functions.


With a small number of cores, the performance of the


process version depends on how many cores share the per-


socket L3 caches. Figure 10’s “Stock + Procs” line shows


performance when the active cores are spread over few


sockets, while the “Stock + Procs RR” shows performance


when the active cores are spread evenly over sockets. As


corroborated by hardware performance counters, the latter


scheme provides higher performance because each new


socket provides access to more total L3 cache space.


Using processes, system time remains small, so the ker-


nel is not a limiting factor. Rather, as the number of cores


increases, pedsort spends more time in the glibc sorting


function msort with tmp, which causes the decreasing


throughput and rising user time in Figure 10. As the num-


ber of cores increases and the total working set size per


socket grows, msort with tmp experiences higher L3


cache miss rates. However, despite its memory demands,


msort with tmp never reaches the DRAM bandwidth


limit. Thus, pedsort is bottlenecked by cache capacity.


5.8 Metis


We measured Metis performance by building an inverted


index from a 2 Gbyte in-memory file. As for Psearchy,


we spread the active cores across sockets and thus have


access to the machine’s full L3 cache space at 8 cores.


The “Stock + 4 KB pages” line in Figure 11 shows


Metis’ original performance. As the number of cores


increases, the per-core performance of Metis decreases.


Metis allocates memory with mmap, which adds the new


memory to a region list but defers modifying page ta-


bles. When a fault occurs on a new mapping, the kernel


locks the entire region list with a read lock. When many


concurrent faults occur on different cores, the lock itself


becomes a bottleneck, because acquiring it even in read


mode involves modifying shared lock state.


We avoided this problem by mapping memory with


2 Mbyte super-pages, rather than 4 Kbyte pages, using


Linux’s hugetlbfs. This results in many fewer page


faults and less contention on the region list lock. We


also used finer-grained locking in place of a global mutex


that serialized super-page faults. The “PK + 2MB pages”


line in Figure 11 shows that use of super-pages increases


performance and significantly reduces system time.


With super-pages, the time spent in the kernel becomes


negligible and Metis’ scalability is limited primarily by


the DRAM bandwidth required by the reduce phase. This


phase is particularly memory-intensive and, at 48 cores,


accesses DRAM at 50.0 Gbyte/second, just shy of the


maximum achievable throughput of 51.5 Gbyte/second


measured by our microbenchmarks.
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Figure 11: Metis throughput and runtime breakdown.


Application Bottleneck


Exim App: Contention on spool directories


memcached HW: Transmit queues on NIC


Apache HW: Receive queues on NIC


PostgreSQL App: Application-level spin lock


gmake App: Serial stages and stragglers


pedsort HW: Cache capacity


Metis HW: DRAM throughput


Figure 12: Summary of the current bottlenecks in MOSBENCH, at-


tributed either to hardware (HW) or application structure (App).


5.9 Evaluation summary


Figure 3 summarized the significant scalability improve-


ments resulting from our changes. Figure 12 summarizes


the bottlenecks that limit further scalability of MOSBENCH


applications. In each case, the application is bottle-


necked by either shared hardware resources or application-


internal scalability limits. None are limited by Linux-


induced bottlenecks.


6 DISCUSSION


The results from the previous section show that the MOS-


BENCH applications can scale well to 48 cores, with mod-


est changes to the applications and to the Linux kernel.


Different applications or more cores are certain to reveal


more bottlenecks, just as we encountered bottlenecks at


48 cores that were not important at 24 cores. For exam-


ple, the costs of thread and process creation seem likely


to grow with more cores in the case where parent and


child are on different cores. Given our experience scaling


Linux to 48 cores, we speculate that fixing bottlenecks


in the kernel as the number of cores increases will also


require relatively modest changes to the application or


to the Linux kernel. Perhaps a more difficult problem is


addressing bottlenecks in applications, or ones where ap-


plication performance is not bottlenecked by CPU cycles,


but by some other hardware resource, such as DRAM


bandwidth.


Section 5 focused on scalability as a way to increase


performance by exploiting more hardware, but it is usu-


ally also possible to increase performance by exploiting
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a fixed amount of hardware more efficiently. Techniques


that a number of recent multicore research operating sys-


tems have introduced (such as address ranges, dedicating


cores to functions, shared memory for inter-core message


passing, assigning data structures carefully to on-chip


caches, etc. [11, 15, 53]) could apply equally well to


Linux, improving its absolute performance and benefiting


certain applications. In future work, we would like to


explore such techniques in Linux.


One benefit of using Linux for multicore research is that


it comes with many applications and has a large developer


community that is continuously improving it. However,


there are downsides too. For example, if future processors


don’t provide high-performance cache coherence, Linux’s


shared-memory-intensive design may be an impediment


to performance.


7 CONCLUSION


This paper analyzes the scaling behavior of a traditional


operating system (Linux 2.6.35-rc5) on a 48-core com-


puter with a set of applications that are designed for par-


allel execution and use kernel services. We find that we


can remove most kernel bottlenecks that the applications


stress by modifying the applications or kernel slightly.


Except for sloppy counters, most of our changes are ap-


plications of standard parallel programming techniques.


Although our study has a number of limitations (e.g., real


application deployments may be bottlenecked by I/O), the


results suggest that traditional kernel designs may be com-


patible with achieving scalability on multicore comput-


ers. The MOSBENCH applications are publicly available


at http://pdos.csail.mit.edu/mosbench/, so that


future work can investigate this hypothesis further.
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