chemps2 1.8.5-1 source package in Ubuntu

Changelog

chemps2 (1.8.5-1) unstable; urgency=medium

  * Changes upstream 1.8.5
  * Install cmake config files with libchemps2-dev (Closes: #887104)
  * Install cmake target files with libchemps2-dev
  * Bump Standards-Version to 4.1.3
  * Deprecate python-chemps2 package
  * Introduce python3-chemps2 package
  * Update rules: python3, dh_numpy3
  * Build-Depends remove python-all, python-setuptools,
    python-docutils, python-sphinx, cython,
    python-numpy and libpython-dev
  * Build-Depends add python3-all (>= 3.6), python3-setuptools,
    python3-docutils, python3-sphinx, cython3,
    python3-numpy and libpython3-dev
  * Update copyright

 -- Sebastian Wouters <email address hidden>  Mon, 15 Jan 2018 22:42:13 +0100

Upload details

Uploaded by:
Debichem Team
Uploaded to:
Sid
Original maintainer:
Debichem Team
Architectures:
any all
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Bionic release universe misc

Downloads

File Size SHA-256 Checksum
chemps2_1.8.5-1.dsc 2.4 KiB e05f80800811a6531d9e0b39416b076618c0efb022a6b0fff66ce1375b115e1b
chemps2_1.8.5.orig.tar.gz 1.2 MiB b7cdda827f218102fe9ac86a1f78c81b1b137ffdb6680dece9baa4893b8bb5d7
chemps2_1.8.5-1.debian.tar.xz 13.2 KiB 4e58693e0ac78ef86adebe4eb068cb3e754ba736335800e80ae038936ec4f739

Available diffs

No changes file available.

Binary packages built by this source

chemps2: Executable to call libchemps2-2 from the command line

 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This package installs the executable which parses Hamiltonians in
 fcidump format, performs DMRG-SCF and DMRG-CASPT2 calculations as
 specified by the user.

chemps2-dbgsym: debug symbols for chemps2
chemps2-doc: Documentation of the libchemps2-2 package

 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This is the common documentation package.

libchemps2-2: No summary available for libchemps2-2 in ubuntu cosmic.

No description available for libchemps2-2 in ubuntu cosmic.

libchemps2-2-dbgsym: debug symbols for libchemps2-2
libchemps2-dev: C++ headers, static library, and symlink for libchemps2-2

 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This package installs the C++ headers, static library, and symlink
 for libchemps2.

python3-chemps2: Python 3 interface for libchemps2-2

 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This package installs the library for Python 3.

python3-chemps2-dbgsym: debug symbols for python3-chemps2