
FAST PERFECT WEIGHTED RESAMPLING

Bart Massey

Associate Professor
Computer Science Department

Portland State University
Portland, Oregon USA
bart@cs.pdx.edu

ABSTRACT
We describe an algorithm for perfect weighted-random re-

sampling of a population with time complexity O(m + n)
for resampling m inputs to produce n outputs. This algorithm

is an incremental improvement over standard resampling al-

gorithms. Our resampling algorithm is parallelizable, with

linear speedup. Linear-time resampling yields notable perfor-

mance improvements in our motivating example of Sequential

Importance Resampling for Bayesian Particle Filtering.

Index Terms— Monte Carlo methods, state estimation,

filtering, tracking filters

1. INTRODUCTION

Bayesian Particle Filtering (BPF) [1] is an exciting new

methodology for state space tracking and sensor fusion.

The bottleneck step in a typical BPF implementation is the

weighted resampling step known as Sequential Importance

Resampling: creating a new population of “particles” from

an old population by random sampling from the source popu-

lation according to the particle weights. Consider resampling

m inputs to produce n outputs. The naı̈ve algorithm has time

complexity O(mn). BPF implementations that resample

using this expensive O(mn) algorithm can afford to resam-

ple only sporadically; this represents a difficult engineering

tradeoff between BPF quality and computational cost.

Resampling via binary search is often used in faster

BPF implementations [2]. However, since the other steps

in a BPF iteration are linear in the number of particles, a

O(m + n log m) binary search will still be the bottleneck

step in such an implementation—a factor of 10 slowdown for

a 1000-particle filter, representing significant extra compu-

tation. The memory access patterns of a binary search also

interact badly with the cache of a modern processor.

One well-known method that has been used to regain the

performance lost to resampling is to give up on statistical cor-

rectness and simply sample at regular intervals [3]. In prac-

tice, this seems to work well, and to run quite quickly. How-

ever, one cannot help but be a bit concerned that regular re-

sampling will “go wrong” in a crucial situation, due to cor-

relations between the sampling interval and an unfortunate

particle set. Although the idea does not seem to be widely

known, the resistance of regular resampling to such correla-

tions can be improved simply by shuffling the particles before

resampling. Since shuffling can be done in O(n) time with

good constant factors, this is probably a good idea.

What is really wanted, however, is a resampling algorithm

with the O(m + n) running time of regular resampling, but

statistically equivalent to naı̈ve resampling. We give such an

algorithm, which we believe to be novel. For a simple ar-

ray representation of the output, simply initializing the out-

put will require time O(n). It seems that the input must be

scanned at least once just to determine the total input weight

for normalization. Thus, the running time of our algorithms

is apparently optimal. We also report on implementations that

are performance-competitive with regular resampling in a toy

BPF domain.

2. WEIGHTED RESAMPLING ALGORITHMS

For what follows, assume an array s of m input samples, and

an output array s′ that will hold the n output samples of the

resampling. Assume further that associated with each sample

si is a weight w(si), and that the weights have been normal-

ized to sum to 1. This can of course be done in time O(m),
but typical efficient implementations keep a running weight

total during weight generation, and then normalize their sam-

pling range rather than normalizing the weights themselves.

We thus discount the normalization cost in our analysis.

2.1. A Naı̈ve O(mn) Resampling Algorithm

The naı̈ve approach to resampling has been re-invented many

times. A correct, if inefficient, way to resample is via the

pseudocode of Figure 1. The sample procedure selects the

first sample such that the sum of weights in the input up to

and including this sample is greater than some index value

μ. The index value is chosen in resample by uniform ran-

34571-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 25, 2008 at 16:29 from IEEE Xplore. Restrictions apply.

to sample(μ):
t ← 0
for i from 1 to m do

t ← t + w(si)
if t > μ then

return si

to resample:

for i from 1 to n do
μ ← random-real([0..1])
s′i ← sample(μ)

Fig. 1. Naı̈ve Resampling

dom sampling from the distribution [0..1], with each output

position being filled in turn.

Despite its poor performance, the naı̈ve algorithm has its

advantages. It is easy to verify that it is a perfect sampling

algorithm. It is easy to implement, and easy to parallelize.

The expected running time is o(1
2mn).

To derive a O(m + n log m) algorithm from the naı̈ve al-

gorithm, note that the linear scan of input samples in Figure 1

can be replaced with a binary search. One way to do this

would be to treat the array of input samples as a heap. This

heap-based algorithm, not shown here for space reasons, does

dramatically improve on the performance of the naı̈ve algo-

rithm without sacrificing correctness.

For some input particle distributions, a further constant-

factor improvement to both the naı̈ve and heap-based algo-

rithms can be had by sorting or heapifying, respectively, the

input particle array so that the largest particles are likely to be

encountered first in the search. The amortized cost of these

operations is small, but may be larger than the cost savings

in typical distributions; the approach also adds a bit to the

complexity of the implementation.

2.2. A Merge-based O(m + n log n) Resampling Algo-
rithm

The real problem with the naı̈ve algorithm is not so much the

cost per scan of the input as it is the fact that each scan is in-

dependent. It seems a shame not to try to do all the work in

one scan. Let us generate an array u of n variates up-front,

then sort it. At this point, a merge operation, as shown in Fig-

ure 2, can be used to generate all n outputs in a single pass

over the m inputs. The merge operation is simple. Walk the

input array once. Each time the sum of weights hits the cur-

rent variate ui, output a sample and move to the next variate

ui+1. The time complexity of the initial sort is O(n log n) and

of the merge pass is O(m + n), for a total time complexity of

O(m + n log n).
Complexity-wise, we seem to have simply moved the log

factor of the heap-based algorithm from m to n, replacing

an O(m + n log m) algorithm with an O(m + n log n) one.

to merge(u):
j ← 1
t ← u1

for i from 1 to n do
μ ← ui

while μ < t do
t ← t + w(sj)
j ← j + 1

s′i ← sj

Fig. 2. Merge-based Resampling

However, the new algorithm has an important distinction. The

log factor this time comes merely from sorting an array of

uniform variates. If we could somehow generate the variates

in sorted order (at amortized constant cost) we could make

this approach run in time O(m + n). The next section shows

how to achieve this.

2.3. An Optimal O(m + n) Resampling Algorithm

As discussed in the previous section, if we can generate the

variates comprising a uniform sample of n values in increas-

ing order, we can resample in time O(m + n). Assume with-

out loss of generality that our goal is simply to generate the

first variate in a uniform sample of n + 1 values. Call the

first variate μ0, the set of remaining variates U and note that

|U | = n. Now, for any given variate μi ∈ X , we have that

Pr(μ0 < μi) = 1− μ0

Since this is independently true for each μi, we define

p(μ0) = Pr(∀μi ∈ U . μ0 < μi) = (1− μ0)n

Thus, if we successively generate n variates ui drawn

from the distribution (1−μ0)n−i, those variates will be statis-

tically indistinguishable from the set of variates produced by

generating n uniform variates and then sorting them. To gen-

erate a variate from the target distribution, it is sufficient to

observe that the likelihood of generating a variate μ is given

by

μ =

∫ μ0

u=0
(1− u)ndu∫ 1

u=0
(1− u)ndu

=

−(1−u)n+1

n+1

∣∣∣μ0

u=0

−(1−u)n+1

n+1

∣∣∣1
u=0

=
−1

n+1

[
(1− μ0)n+1 − 1

]
0− −1

n+1

= 1− (1− μ0)n+1

3458

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 25, 2008 at 16:29 from IEEE Xplore. Restrictions apply.

to randomize:

u1 ← (1− μ)
1
n

for i from 2 to n do
ui ← ui−1 + (1− ui−1)(1− μ)

1
n−i+1

Fig. 3. Generating Deviates In Increasing Order

However, what we need is μ0 in terms of μ, so we solve

μ = 1− (1− μ0)n+1

(1− μ0)n+1 = 1− μ

μ0 = 1− (1− μ)
1

n+1

μ0 = 1− μ
1

n+1

(The last step is permissible because μ is a uniform deviate

in the range 0..1, and therefore statistically equivalent to (1−
μ).)

We now have the formula we need for selecting the first

deviate from a set of n in increasing order. To select the next

deviate, we simply decrease n by 1, select a deviate from

the whole range, and then scale and offset it to the remain-

ing range. We repeat this process until n = 0. (Recall that

|U | = n, so the last deviate will be selected when n = 0.)

Figure 3 shows this process.

We now have the array u of deviates in sorted order that

we need to feed the merge algorithm of the previous section.

We thus have an O(m + n) algorithm for random weighted

selection.

2.4. Faster Generation of Variates

The method of directly generating variates described in the

previous section has a minor limitation: it requires an ex-

ponentiation per variate. Even a fast implementation of the

mathematical function pow() on a machine with fast floating

point is expensive compared to the single multiply of regular

resampling.

One possible way around the pow() bottleneck is to gen-

erate random variates with distribution (1−x)n by Marsaglia

and Tsang’s “Ziggurat Method” PRNG [4, 5]. Unfortunately,

the desired distribution is bivariate. The most direct approach

would lead to generating n sets of Ziggurat tables, which

would be prohibitively memory-expensive for large n.

When computing (1−x)n for large n, however, our proba-

bility expression becomes self-similar, and we can accurately

approximate the function for larger n using the function with

smaller n. In fact, this is the well-known compound interest

problem, yielding an elegant limiting approximation.

lim
a→∞

(
1− x

a

)an

= lim
a→∞

(
1 +

(−x)
a

)an

= e−xn

This approximation corresponds to a standard linear-time

approximate resampling method in which the next sample

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16 18 20

actual vehicle track
min. est. vehicle track
avg. est. vehicle track

(a) Naı̈ve Resampling

-20

-15

-10

-5

 0

 5

-4 -2 0 2 4 6 8 10 12 14 16

actual vehicle track
min. est. vehicle track
avg. est. vehicle track

(b) Optimal Resampling

Fig. 4. Vehicle Tracking Using BPF

weight is given by an exponentially-distributed variate [6].

The approximation works well up until near the end of the

resampling, and is relatively inexpensive if a Ziggurat-style

exponential generator is used.

We can get the same performance with perfect resam-

pling, though, by modifying a Ziggurat generator for e−50μ0

to accurately compute the desired power by tweaking the re-

jection step. The efficiency of the generator would deterio-

rate unacceptably in the last 50 samples, so at that point we

just switch to calling pow() directly. The resulting resam-

pling implementation has performance close to that of regu-

lar resampling, but with the perfect resampling of the naı̈ve

method.

A parallel version of our perfect algorithm is straightfor-

ward to achieve. Although space precludes a detailed de-

scription, the basic idea is as follows. Given p processors,

each processor generates a variate vi from the distribution

xi(1− x)p−i, then binary searches for the sample breakpoint

corresponding to that variate. Then the processor generates

n/p samples in the range vi−1 . . . vi using the perfect resam-

pling algorithm. This achieves a linear speedup while retain-

ing statistically correct resampling.

3. EVALUATION

We implemented the algorithms described previously in a

BPF tracker for simulated vehicle navigation. The simulated

vehicle has a GPS-like and an IMU-like device for naviga-

tional purposes; both the device and the vehicle model are

noisy. Figures 3 and 3 show 1000-step actual and estimated

vehicle tracks from the simulator for the 100-particle case,

using the naı̈ve and optimal algorithms. Note that the qual-

ity of tracking of the two algorithms is indistinguishable, as

expected.

The important distinction between the algorithms we have

presented is not quality, but rather runtime. Figure 5 shows

the time in seconds for 1000 iterations of BPF with various

resampling algorithms as a function of the number of particles

tracked / resampled. The benchmark machine is an otherwise

unloaded Intel Core II Duo box at 2.13 GHz with 2GB of

memory.

As expected, BPF using the naı̈ve algorithm becomes un-

usable at larger particle sizes, whereas BPF using the optimal

3459

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 25, 2008 at 16:29 from IEEE Xplore. Restrictions apply.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000 120000 140000 160000

tim
e

(s
ec

s
fo

r 1
00

0
st

ep
s)

particles

Naive resampling
Naive resampling with presort

Heap-based resampling
Heap-based resampling with heapify

Optimal resampling
Optimal resampling with ziggurat
Regular resampling with shuffle

Regular resampling

Fig. 5. Runtimes for BPF Resampling Implementations

algorithm scales linearly. The heap-based algorithms are sur-

prisingly competitive with the optimal algorithm even at large

particle counts, although the distinction is somewhat masked

by the mediocre running time of the rest of the BPF imple-

mentation; resampling is not the bottleneck for any of these

fast algorithms, as the near-zero cost of the regular algorithm

without shuffling indicates.

The performance difference between our Ziggurat-based

implementation of optimal resampling and our shuffled im-

plementation of regular resampling is quite small. Given this,

we believe that the statistical correctness of optimal resam-

pling will make it the best choice for many implementations.

4. AVAILABILITY

Our C implementation of BPF with linear resampling de-

scribed here is freely available under the GPL at http:
//wiki.cs.pdx.edu/bartforge/bmpf. It relies on

our BSD-licensed implementation (partly based on the work

of others—please see the distribution for attribution) of var-

ious PRNGs and Ziggurat generators at http://wiki.
cs.pdx.edu/bartforge/ziggurat.

5. ACKNOWLEDGMENTS

Thanks much to Jules Kongslie, Mark Jones, Dave Archer,

Jamey Sharp, Josh Triplett and Bryant York for illuminating

conversations during the discussion of this work. Thanks also

to Jules Kongslie and to James McNames and his students for

patiently explaining BPF to me and answering my questions.

Finally, thanks to Keith Packard and Intel for providing the

hardware on which this work was primarily done.

6. REFERENCES

[1] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon,

Beyond the Kalman Filter: Particle Filters for Tracking
Applications, Artech House, Feb. 2004.

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,

“A tutorial on particle filters for on-line non-linear/non-

Gaussian Bayesian tracking,” IEEE Transactions on Sig-
nal Processing, vol. 50, no. 2, Feb. 2002.

[3] G. Kitagawa, “Monte Carlo filter and smoother for non-

Gaussian nonlinear state space models,” Journal of Com-
putational and Graphical Statistics, vol. 5, no. 1, 1996.

[4] George Marsaglia and Wai Wan Tsang, “The ziggurat

method for generating random variables,” J. Statistical
Software, vol. 5, no. 8, Oct. 2000.

[5] Boaz Nadler, “Design flaws in the implementation of the

Ziggurat and Monty Python methods (and some remarks

on Matlab randn),” 2006, arXiv.org.

[6] J. Carpenter, P. Clifford, and P. Fernhead, “An improved

particle filter for non-linear problems,” 1997.

3460

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 25, 2008 at 16:29 from IEEE Xplore. Restrictions apply.

