
Fast Perfect Weighted Resampling

Bart Massey
Assoc. Prof. Computer Science

Portland State University
bart@cs.pdx.edu

Draft of September 23, 2008
Do Not Distribute

Abstract

We describe an algorithm for perfect weighted-random resampling of a population
with time complexity O(m + n) for resampling m inputs to produce n outputs. This
algorithm is an incremental improvement over standard resampling algorithms. Our re-
sampling algorithm is parallelizable, with linear speedup. Linear-time resampling yields
notable performance improvements in our motivating example of Sequential Importance
Resampling for Bayesian Particle Filtering.

1 Introduction

Bayesian Particle Filtering (BPF) [8] is an exciting new methodology for state space track-
ing and sensor fusion. The bottleneck step in a typical BPF implementation is the weighted
resampling step known as Sequential Importance Resampling: creating a new population of
“particles” from an old population by random sampling from the source population accord-
ing to the particle weights. Consider resampling m inputs to produce n outputs. The näıve
algorithm has time complexity O(mn). BPF implementations that resample using this ex-
pensive O(mn) algorithm can afford to resample only sporadically; this represents a difficult
engineering tradeoff between BPF quality and computational cost.

In this paper we first present an algorithm with complexity O(m+ n logm) based on a binary
heap-structured tree which is straightforward, has good performance, and requires no special
math. This is essentially a binary search method, often used in faster BPF implementations [1].
However, we introduce a potential performance optimization that takes advantage of the heap
property.

1

Resampling via binary search is often used in faster BPF implementations [1]. However, since
the other steps in a BPF iteration are linear in the number of particles, a O(m+n logm) binary
search will still be the bottleneck step in such an implementation—a factor of 10 slowdown for
a 1000-particle filter, representing significant extra computation. The memory access patterns
of a binary search also interact badly with the cache of a modern processor.

We introduce a family of perfect and approximate algorithms based on the idea of simulating
the scans of the näıve algorithm in parallel; making a single pass through the m input samples
and selecting n output samples during this pass.

One well-known method that has been used to regain the performance lost to resampling is
to give up on statistical correctness and simply sample at regular intervals [5]. We derive a
standard approximate O(m + n) algorithms for regular resampling. In practice, this seems
to work well, and to run quite quickly. However, one cannot help but be a bit concerned
that regular resampling will “go wrong” in a crucial situation, due to correlations between
the sampling interval and an unfortunate particle set. Although the idea does not seem to be
widely known, the resistance of regular resampling to such correlations can be improved simply
by shuffling the particles before resampling. Since shuffling can be done in O(n) time with
good constant factors, this is probably a good idea.

The principal contribution of this work is an algorithm that we believe to be novel, with time
complexity O(m+ n) (requiring just the normal O(m+ n) space) that produces a resampling
statistically equivalent to näıve resampling. For a simple array representation of the output,
simply initializing the output will require time O(n). It seems that the input must be scanned
at least once just to determine the total input weight for normalization. Thus, the running
time of our algorithms is apparently optimal.

An O(n) algorithm by Beadle and Djuric [2] produces an output sample that is only approxi-
mately correctly weighted. The basic method is to repeatedly randomly select an input sample,
and then replicate it in the output sample the number of times that it would be expected to
appear based on its fraction of the total weight. As noted above, calculating the total weight
requires O(m) time, so the advantage of the O(n) algorithm over an O(m+n) one is essentially
lost in practice. The quality of the approximation is shown to be reasonably good, and it is
shown to work well in one BPF application. However, it is only an approximate method, and
one might expect that there are limits to the approximation quality. The authors report a
speedup of approximately 20 for 500 particles, but no other details are given about running
time. We suspect that the situation is more complicated; to investigate further would require
independently implementing and timing this approach.

BPF is typically computation-limited, and all of the other steps in a BPF iteration require time
linear in the population size. By linearizing resampling, we remove the resampling bottleneck,
allowing higher population sizes that in turn dramatically improve BPF performance.

In the remainder of this paper we review existing algorithms, describe our algorithms, and
report the effectiveness of algorithms in a BPF implementation. We conclude with a discussion
of various issues.

2

to sample(µ):
t ← 0
for i from 1 to m do

t ← t+ w(si)
if t > µ then

return si

to resample:
for i from 1 to n do

µ ← random-real([0..1])
s′i ← sample(µ)

Figure 1: Näıve Resampling

2 Weighted Resampling Algorithms

There are a number of approaches to the weighted resampling problem. In this section, we de-
scribe some weighted resampling algorithms in order of increasing time efficiency. We conclude
with the description of some O(m+ n) algorithms.

For what follows, assume an array s of m input samples, and an output array s′ that will hold
the n output samples of the resampling. Assume further that associated with each sample
si is a weight w(si), and that the weights have been normalized to sum to 1. This can of
course be done in time O(m), but typical efficient implementations keep a running weight total
during weight generation, and then normalize their sampling range rather than normalizing
the weights themselves. We thus discount the normalization cost in our analysis.

2.1 A Näıve O(mn) Resampling Algorithm

The näıve approach to resampling has been re-invented many times. A correct, if inefficient,
way to resample is via the pseudocode of Figure 1. The sample procedure selects the first
sample such that the sum of weights in the input up to and including this sample is greater
than some index value µ. The index value is chosen in resample by uniform random sampling
from the distribution [0..1], with each output position being filled in turn.

The näıve algorithm has its advantages. It is easy to verify that it is a perfect sampling algo-
rithm. It is easy to implement, and easy to parallelize. The expected running time is o(1

2
mn).

If the distribution of weights is uneven enough, as is typical with BPF, the proportionality
constant can be improved by paying O(m logm) time up front to sort the input array so that
the largest weights occur first. Regardless, näıve resampling is still the bottleneck step in BPF
implementations that employ it.

3

to init-weights:
for i from m downto 1 do

l ← 2i
r ← 2i+ 1
if l > m then

wt(si) ← w(si)
else if r > m then

wt(si) ← wt(sl) + w(si)
else

wt(si) ← wt(sl) + w(si) + wt(sr)

Figure 2: Computing Weights of Sub-heaps

to sample(µ, i):
l ← 2i
r ← 2i+ 1
if µ < wt(sl) then

return sample(µ, l)
if µ ≤ wt(sl) + w(si) then

return si
return sample(µ− wt(sl)− w(si), r)

Figure 3: Heap-based Sampling

2.2 A Heap-based O(m+ n logm) Resampling Algorithm

One simple way to improve the performance of the näıve algorithm is to improve upon the
linear scan performed by sample in Figure 1.

One way to do this is to treat the input sample array as a binary heap. In time O(m) we can
compute and cache the sum wl of weights of the subtree at each position in the input, as shown
in Figure 2. The sum at each heap position is computed bottom-up and stored as wt.

Given wt, sample can perform a scan for the correct input weight in time O(logm) by scanning
down from the top of the heap, as shown in Figure 3. At each step, if the target variate µ is
less than the weight of the left subtree, the scan descends left. If µ is greater than the weight of
the left subtree by less than the weight of the current node the scan terminates and this node
is selected. Otherwise, the scan descends right, with µ adjusted downward by the cumulate
weight.

This algorithm is a bit more complex than the näıve one, but it dramatically improves upon
the worst-case running time.

As with the näıve algorithm, a small constant-factor improvement is possible by actually heapi-
fying the input such that the largest-weighted inputs are near the top. Heapification is also
O(m) time and can be done in place, so there is no computational complexity penalty for this

4

to merge(u):
j ← 1
t ← u1

for i from 1 to n do
µ ← ui
while µ < t do

t ← t+ w(sj)
j ← j + 1

s′i ← sj

Figure 4: Merge-based Resampling

optimization. However, the constant factors must be carefully balanced; our experiments show
a small net loss in some situations and net gain in others. The controlling factor here is the
distribution of weights; if a few samples carry most of the sample weight, heapification will pay
for itself. Since the case in BPF where a few samples carry most of the weight tends to be the
case where the accuracy of the filter is low, this optimization may be of special benefit in a
variable-population BPF technique such as KLD-sampling [4].

For the normal case of resampling, we would like to get rid of the logm penalty per output
sample. However, there is a rarely-occuring special case in which this algorithm is especially
efficient. Consider an offline sampling problem in which we plan to repeatedly draw a small
number of samples from the same extremely large input distribution. Because the input dis-
tribution remains fixed, the cost of heapification can be amortized away, yielding an amortized
O(n logm) algorithm.

2.3 A Merge-based O(m+ n log n) Resampling Algorithm

One can imagine trying to improve upon the complexity of the heap-style algorithm by using
some more efficient data structure. However, there is a fundamental tradeoff—the setup for
an improved algorithm needs to continue to have a cost low in m. Otherwise, any savings in
resampling will be swamped by setup in the common case that m ≈ n.

A better plan is to try to improve the näıve algorithm in a different way. The real problem
with the näıve algorithm is not so much the cost per scan of the input as it is the fact that
each scan is independent. It seems a shame not to try to do all the work in one scan.

Let us generate an array u of n variates up-front, then sort it. At this point, a merge operation,
as shown in Figure 4, can be used to generate all n outputs in a single pass over the m inputs.
The merge operation is simple. Walk the input array once. Each time the sum of weights hits
the current variate ui, output a sample and move to the next variate ui+1. The time complexity
of the initial sort is O(n log n) and of the merge pass is O(m+ n), for a total time complexity
of O(m+ n log n).

5

Complexity-wise, we seem to have simply moved the log factor of the previous algorithm from
m to n, replacing our O(m+n logm) algorithm with an O(m+n log n) one. However, our new
algorithm has an important distinction. The log factor this time comes merely from sorting
an array of uniform variates. If we could somehow generate the variates in sorted order (at
amortized constant cost) we could make this approach run in time O(m+n). The next section
shows how to achieve this.

Alternatively, if we could sort the variates in O(n) time, we could get an O(m+n) merge-based
algorithm. Given that what we are sorting is n variates uniformly distributed between 0 and
1, a radix sort should do the trick here. However, the constant factors in the running time are
expected to be poor for large n, since the radix sort has extremely poor cache behavior.

2.4 Regular Approximate Resampling

For large m, a sorted array of uniform deviates looks an awful lot like it was produced by
sampling at regular intervals; the spacing between deviates is pretty uniform. This suggests an
obvious approximate linear-time algorithm, which turns out to be a well-known approach [5]:
sample the n output samples at uniformly-spaced regular intervals. While it is not clear that
such a resampling algorithm has the same statistical properties as a perfect resampling, it seems
to be sufficiently good for our BPF implementation, and to run about as fast as possible.

If one is concerned about the possible selection errors of regular sampling due to correlation, one
might choose to shuffle the sample array prior to sampling. Since the shuffle can be performed
in O(m) time, there is no asymptotic penalty.

2.5 An Optimal O(m+ n) Resampling Algorithm

As discussed in Section 2.3, if we could generate the variates comprising a uniform sample of n
values in increasing order, we could resample perfectly in time O(m+ n), improving upon the
regular method of Section 2.4. In this section, we show an approach that achieves this goal.

Assume without loss of generality that our goal is simply to generate the first variate in a
uniform sample of n + 1 values. Call the first variate µ0, the set of remaining variates U and
note that |U | = n. Now, for any given variate µi ∈ X, we have that

Pr(µ0 < µi) = 1− µ0

Since this is independently true for each µi, we define

p(µ0) = Pr(∀µi ∈ U . µ0 < µi) = (1− µ0)
n

To see how to take a weighted random sample from this distribution, first consider a discrete
approximation that divides the range 0..1 into T intervals. Given a random variate µ, we will

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

sum of heights up to variant
total sum of heights

Figure 5: Discrete Sampling Approximation

use µ0 = i0/T when the sum of the weights of the intervals up to interval i0 is just greater than
µ. Of course, the weights must be normalized by dividing by the total weight. Thus we have

i0 = min
i∈1..T

[∑i
j=1 p(j/T)∑T
j=1 p(j/T)

≥ µ

]

Figure 5 illustrates the calculation here. We output as our weighted variate the x-coordinate
i0/T of the bar containing µ.

In the limit as T →∞ our discrete approximation converges to an integral. We have

µ =

∫ µ0

u=0
(1− u)ndu∫ 1

u=0
(1− u)ndu

=

−(1−u)n+1

n+1

∣∣∣µ0

u=0

−(1−u)n+1

n+1

∣∣∣1
u=0

=
−1
n+1

[(1− µ0)
n+1 − 1]

0− −1
n+1

= 1− (1− µ0)
n+1

7

to randomize:

u1 ← (1− µ)
1
n

for i from 2 to n do

ui ← ui−1 + (1− ui−1)(1− µ)
1

n−i+1

Figure 6: Generating Deviates In Increasing Order

However, what we need is µ0 in terms of µ, so we solve

µ = 1− (1− µ0)
n+1

(1− µ0)
n+1 = 1− µ
µ0 = 1− (1− µ)

1
n+1

µ0 = 1− µ
1

n+1

(The last step is permissible because µ is a uniform deviate in the range 0..1, and therefore
statistically equivalent to (1− µ).)

We now have the formula we need for selecting the first deviate from a set of n in increasing
order. To select the next deviate, we simply decrease n by 1, select a deviate from the whole
range, and then scale and offset it to the remaining range. We repeat this process until n = 0.
(Recall that |U | = n, so the last deviate will be selected when n = 0.) Figure 6 shows this
process.

We now have the array u of deviates in sorted order that we need to feed the merge algorithm
of the previous section. We thus have an O(m+ n) algorithm for random weighted selection.

2.5.1 Correctness of the Optimal Algorithm

To see that our optimal algorithm is correct, we first must describe what correctness means. To
do this, we will define statistical equivalence of distributions, and then show that the distribution
produced by the optimal algorithm is uniform.

Definition 1 A distribution is a tuple 〈S, p〉 where S is a nonempty, possibly infinite set, and
p : S → R is a probability density function on elements of the set normalized such that∑

s∈S

p(s) = 1

Definition 2 Two distributions 〈S, p1〉 and 〈S, p2〉over the same set S are statistically equiv-
alent when the probability of each element is equal, i.e., when

∀s ∈ S . p1(s) = p2(s)

8

to randomize n points:
if n = 0 return 〈〉
u0 ← (1− µ)

1
n

u = randomize(n− 1)
return 〈u0〉 · (u0 + (1− u0) · u)

Figure 7: Recursively Generating Deviates

Definition 3 The set Un of n-point uniform distributions is defined by

Un(a, b) =

{〈
x,

1

b− a

〉 ∣∣x ∈ [a..b]

}

We proceed by showing that Un(a, b) is linear in a and b.

Lemma 1 (Scaling) For all s ∈ R+, the distributions Un(0, s) and s ·Un(0, 1) are statistically
equivalent.

Lemma 2 (Offset) For all t, a, b ∈ R, the distributions Un(t + a, t + b) and t + Un(a, b) are
statistically equivalent.

For convenience of proof, we note that Figure 6 is actually an iterative version of a more natural
recursive algorithm show in Figure 7. The equivalence of the algorithms of Figures 6 and 7 is
left as an exercise, but is straightforward.

The correctness of the recursive algorithm of Figure 7 can be established by a simple inductive
proof. We sketch that proof here.

Proposition 1 The algorithm of Figure 7 generates a sorted uniform sequence of n points,
i.e., an ordered vector drawn from the uniform distribution Un(0, 1).

Proof Sketch: We proceed by induction on the number of points n being generated.

Base Case: When n = 0, the sequence returned is a uniform sequence of 0 points. (This is
a bit disingenuous. Note that the sequence returned when n = 1 is

〈(1− µ)
1
1 〉 · 〈〉 = 〈1− µ〉 = 〈µ〉

The second equivalence is permissible because µ is a uniform deviate in the range 0..1,
and therefore statistically equivalent to (1− µ).)

Inductive Case: By construction, the variate u0 is distributed in a fashion statistically equiv-
alent to the leftmost variate drawn from a uniform n-point distribution. What remains
to show is that the remaining n− 1 variates are distributed properly.

9

To see this, consider what is known about an arbitrary point uj. We know that uj was
chosen uniformly over 0..1, and that it turned out that uj ≥ u0. A statistically equivalent
process for generating uj would thus be to generate and reject uniform variates until we
have one greater than or equal to u0. Thus, uj can be drawn from the uniform distribution
Un−1(u0, 1). But by the scaling and offset lemmas above, this is statistically equivalent to
drawing a u from Un−1(0, 1) and then transforming it to uj = u0 + (1 − u0)u. By the
inductive hypothesis, our code draws u from the uniform distribution; it then scales and
offsets it in exactly the right way to distribute it across the remaining interval.

2.5.2 Faster Generation of Variates

The method of directly generating variates described in the previous section has a minor limita-
tion: it requires an exponentiation per variate. Even a fast implementation of the mathematical
function pow() on a machine with fast floating point is expensive compared to the single mul-
tiply of regular resampling.

One possible way around the pow() bottleneck is to generate random variates with distribution
(1−x)n by Marsaglia and Tsang’s “Ziggurat Method” PRNG [6, 7]. Unfortunately, the desired
distribution is bivariate. The most direct approach would lead to generating n sets of Ziggurat
tables, which would be prohibitively memory-expensive for large n.

When computing (1−x)n for large n, however, our probability expression becomes self-similar,
and we can accurately approximate the function for larger n using the function with smaller
n. In fact, this is the well-known compound interest problem, yielding an elegant limiting
approximation.

lim
a→∞

(
1− x

a

)an
= lim

a→∞

(
1 +

(−x)

a

)an
= e−xn

This approximation corresponds to a standard linear-time approximate resampling method
in which the next sample weight is given by an exponentially-distributed variate [3]. The
approximation works well up until near the end of the resampling, and is relatively inexpensive
if a Ziggurat-style exponential generator is used.

We can get the same performance with perfect resampling, though, by modifying a Ziggurat
generator for e−50µ0 to accurately compute the desired power by tweaking the rejection step.
The efficiency of the generator would deteriorate unacceptably in the last 50 samples, so at
that point we just switch to calling pow() directly. The resulting resampling implementation
has performance close to that of regular resampling, but with the perfect resampling of the
näıve method.

A parallel version of our perfect algorithm is straightforward to achieve. Although space
precludes a detailed description, the basic idea is as follows. Given p processors, each processor
generates a variate vi from the distribution xi(1 − x)p−i, then binary searches for the sample
breakpoint corresponding to that variate. Then the processor generates n/p samples in the
range vi−1 . . . vi using the perfect resampling algorithm. This achieves a linear speedup while

10

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16 18 20

actual vehicle track
min. est. vehicle track
avg. est. vehicle track

(a) Näıve Resampling

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15

actual vehicle track
min. est. vehicle track
avg. est. vehicle track

(b) Optimal Resampling

Figure 8: Vehicle Tracking Using BPF

retaining statistically correct resampling.

3 Evaluation

We implemented the algorithms described previously in a BPF tracker for simulated vehicle
navigation. The simulated vehicle has a GPS-like and an IMU-like device for navigational
purposes; both the device and the vehicle model are noisy. Figures 3 and 3 show 1000-step
actual and estimated vehicle tracks from the simulator for the 100-particle case, using the
näıve and optimal algorithms. Note that the quality of tracking of the two algorithms is
indistinguishable, as expected.

The important distinction between the algorithms we have presented is not quality, but rather
runtime. Figures 9 and 10 show the time in seconds for 1000 iterations of BPF with various
resampling algorithms as a function of the number of particles tracked / resampled. The
benchmark machine is an otherwise unloaded Intel Core II Duo box at 2.13 GHz with 2GB of
memory.

The distinction between algorithms is somewhat masked by the mediocre running time of
the rest of the BPF implementation; resampling is not the bottleneck for any of these fast
algorithms. The performance of the regular algorithm without shuffling illustrates this—the
cost of that algorithm is quite close to zero, and thus represents something of a bound on the
performance improvement possible through faster resampling.

As expected, BPF using the näıve algorithm becomes unusable at larger particle sizes, whereas
BPF using the optimal algorithm scales linearly. There does not appear to be much advantage
in using a heap-based algorithm at any particle size. The Ziggurat implementation of our
optimal algorithm is quite close to regular resampling with shuffle at large particle counts.
Given the correctness of our optimal algorithm, we think that this represents a significant
achievement.

11

 0

 20

 40

 60

 80

 100

 120

 140

 0 20000 40000 60000 80000 100000 120000 140000 160000

tim
e

(s
ec

s
fo

r
10

00
 s

te
ps

)

particles

Naive resampling
Naive resampling with presort

Heap-based resampling
Heap-based resampling with heapify

Optimal resampling
Optimal resampling with ziggurat
Regular resampling with shuffle

Regular resampling

Figure 9: Runtimes for BPF Implementation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 10 20 30 40 50 60 70 80 90 100

tim
e

(s
ec

s
fo

r
10

00
 s

te
ps

)

particles

Naive resampling
Naive resampling with presort

Heap-based resampling
Heap-based resampling with heapify

Optimal resampling
Optimal resampling with ziggurat
Regular resampling with shuffle

Regular resampling

Figure 10: Detail of Figure 9

12

4 Discussion

We have shown an O(m + n) algorithm for perfect resampling, and an extremely fast BPF
implementation based on this algorithm. However, further speedups are possible. In this
section, we discuss some of them.

4.1 Constant Factors

In a typical noise model, there is one call to a Gaussian-distributed pseudo-random number
generator and to the exp() function per particle per sensor: this is how the weights are
updated. These are the constant-factor bottlenecks in a BPF implementation with linear-time
or near-linear-time resampling.

The cost of generating Gaussian pseudo-random numbers can be reduced to insignificance by
using Marsaglia and Tsang’s “Ziggurat Method” PRNG [6]. We observed an approximate
doubling of speed in our BPF implementation by switching to this PRNG, and it is now far
from being the bottleneck.

The exp() bottleneck is harder. We have recently switched to a fast approximate exponentia-
tion trick due to Schraudolph [9], which improved our performance considerably, but the large
number of calls is still painful. It may be better to just change noise distributions altogether.
Work is still underway in this area.

The remaining bottleneck in resampling itself is the cost of the O(n) calls to the pow() function,
each with a slightly different argument. These rational exponentiations are computed during
variate generation by calling the standard math library function pow(x,y). Since there is only
one call to pow() per particle, but many calls to exp() per particle, this is not the bottleneck
step for BPF. However, it would be nice to cut it down, and approaches are available.

4.1.1 Direct Generation of Variates

One way around the pow() bottleneck is to generate random variates with distribution (1−x)n

by some less expensive method than that of Section 2.5. The Ziggurat method mentioned pre-
viously would be about right, except that the desired distribution is a two-argument function.
The most direct approach would lead to generating n sets of Ziggurat tables, which would be
prohibitively memory-expensive for large n.

When computing (1−x)n for large n, however, our probability expression becomes self-similar,
and we can accurately approximate the function for larger n using the function with smaller n.

(1− x)n ≈
(

1− x

a

)an
In fact, this is the well-known compound interest problem, yielding an elegant limiting approx-

13

imation.

lim
a→∞

(
1− x

a

)an
= lim

a→∞

(
1 +

(−x)

a

)an
= e−xn

This approximation corresponds to a standard linear-time approximate resampling method
in which the next sample weight is given by an exponentially-distributed variate [3]. The
approximation works well up until near the end of the resampling, and is relatively inexpensive
if a Ziggurat-style exponential generator is used.

We can do better, though, by modifying the Ziggurat generator to accurately compute the
desired power by tweaking the rejection step—this will converge poorly for the last 50 samples
or so due to the degenerating approximation, at which point we can just switch to calling pow()

directly.

4.1.2 Segmentation

The concentration so far has been on generating the uniform variates sequentially. However,
for parallelization one would first like to break up the variates into blocks which are treated
separately. This is discussed further in Section 4.2.

To break the variates up into blocks, we could try to derive a direct expression for placing
sample k of n for arbitrary k. This would allow us to “skip forward” by k samples and place a
variate, then deal with the intervening variates at our leisure.

We observe that if a uniform variate µk is at position k of n, k − 1 of the samples must have
landed to the left of µk and n− k of the samples must have landed to the right. There are in
general

(
n
k−1

)
ways this can happen, so the probability of µk being the kth sample is

p(µk) = Pr(µk is at position k) =
(
n
k−1

)
(µk)

k−1(1− µk)n−k

The direct method used in Section 2.5 next requires computing the probability that a variate
µ is in the right position via

p(µ) = Pr(µk = µ) =

∫ µk

u=0

(
n
k−1

)
(µk)

k(1− µk)n−kdu∫ 1

u=0

(
n
k−1

)
(µk)k(1− µk)n−kdu

The integral in the denominator can be calculated directly.∫ 1

u=0

(
n
k−1

)
(µk)

k(1− µk)n−kdu =
(
n
k−1

)Γ(1 + n− k)Γ(k)

Γ(n+ 1)

Unfortunately, the integral in the numerator is more of a mess:∫ µk

u=0

(
n
k−1

)
(µk)

k(1− µk)n−kdu =
(
n
k−1

)
(µk)

k
2F1(k,−n+ k; k + 1;µk)

where 2F1 is Gauss’s hypergeometric function.

14

Any further progress in this direction appears to be limited by the difficulty of solving p(µ)
for µ0. A rejection method for direction generation of µ0 would probably be a better approach
here—a somewhat inefficient method would be fine, since few calls would be made to this
generator. Alternatively, one could just give up and divide the range uniformly. The error of
this approximation should be extremely small, and it would avoid a lot of complexity.

4.2 Paralellization

Our optimal algorithm will parallelize reasonably well with some additional work.

1. Each processor fills in a section of total accumulated weights in the input particle array
as described in Section 2.3.

2. In a separate pass, each processor adds the sum of weights computed by the processor to
its left to its section of the total accumulated weights in the input particle array.

3. A master processor uses one of the methods of “skipping ahead” in the variate sequence
described in the previous section to break up the array of variates to be calculated by
our P -processor machine into P regions.

4. Each processor does a search for the start and end of its section of the input particle
array—the section whose total weights contain its variates. This can be done in time
O(logm) using binary search, with an impressively small constant factor.

5. Finally, each processor resamples its section of the array using any of the fast algorithms
we describe. The key here is that these algorithms are all completely parallelizable with
zero overhead, given the setup of steps 1–4.

4.3 Recommendations

There appear to be three basic regimes that weighted resampling is deployed in. The choice
among the algorithms presented here may be largely guided by the deployment.

In the “offline” environment, extremely fast desktop computers or even supercomputers are
being used in resampling. In this regime, the cost of floating point is low, the desired resampling
accuracy is high, millions or billions of input samples may be presented to the resampler, and
parallel processing is often a real option. The perfect optimal algorithm seems like an ideal
choice in this domain. One example of this environment is BPF for biomedical signal procesing,
with which we have had some involvement.

In the “high performance embedded” environment, a single high-performance CPU, typically
without floating point, is available, the desired resampling accuracy is high, real-time per-
formance is usually required, and thousands to tens of thousands of input samples may be

15

preseted to the resampler. In this environment, either our optimal resampler or regular resam-
pling with shuffle may be appropriate. One example of this environment is the BPF sensor
fusion on the PPC Linux flight computer aboard our amateur sounding rocket, for which this
BPF implementation was originally developed.

In the “low-end embedded” environment, a fairly slow CPU, typically without floating point,
is available, the desired resampling accuracy is only moderate, real-time performance is usually
required, and hundreds to tens of thousands of input samples may be presented to the resampler.
In this regime, a regular resampler, which can be implemented in a very small amount of very
fast fixed-point or integer code, seems to be the best match. One example of this environment
is a proprietary real-time BPF sensor fusion application for a portable ARM-7 device that we
are currently working on.

Availability

Our C implementation of BPF with linear resampling described here is freely available under
the GPL at http://wiki.cs.pdx.edu/bartforge/bmpf. It relies on our BSD-licensed imple-
mentation (partly based on the work of others—please see the distribution for attribution) of
various PRNGs and Ziggurat generators at http://wiki.cs.pdx.edu/bartforge/ziggurat.

Acknowledgments

Thanks much to Jules Kongslie, Mark Jones, Dave Archer, Jamey Sharp, Josh Triplett and
Bryant York for illuminating conversations during the discussion of this work. Thanks also
to Jules Kongslie and to James McNames and his students for patiently explaining BPF to
me and answering my questions. Finally, thanks to Keith Packard and Intel for providing the
hardware on which this work was primarily done.

References

[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-
line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,
50(2), February 2002.

[2] E.R. Beadle and P.M. Djuric. A fast weighted Bayesian bootstrap filter for nonlinear model
state estimation. IEEE Trans. Aerospace and Electronic Systems, 33(1), January 1997.

[3] J. Carpenter, P. Clifford, and P. Fernhead. An improved particle filter for non-linear prob-
lems, 1997.

16

[4] D. Fox. Kld-sampling: Adaptive particle filters. Advances in Neural Information Processing
Systems (NIPS), 16, 2001.

[5] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 5(1), 1996.

[6] George Marsaglia and Wai Wan Tsang. The ziggurat method for generating random vari-
ables. J. Statistical Software, 5(8), October 2000.

[7] Boaz Nadler. Design flaws in the implementation of the Ziggurat and Monty Python meth-
ods (and some remarks on Matlab randn), 2006. arXiv.org.

[8] Branko Ristic, Sanjeev Arulampalam, and Neil Gordon. Beyond the Kalman Filter: Particle
Filters for Tracking Applications. Artech House, February 2004.

[9] Nicol N. Schraudolph. A fast, compact approximation of the exponential function. Techni-
cal Report IDSIA-07-98, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Lugano,
Switzerland, October 1998.

17

