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In the mathematical subject known as
group theory, given a group G under a
binary operation *, we say that some
subset H of G is a subgroup of G if H
also forms a group under the
operation *. More precisely, H is a
subgroup of G if the restriction of * to
H x H is a group operation on H. This is
usually represented notationally by H ≤
G, read as "H is a subgroup of G".

A proper subgroup of a group G is a
subgroup H which is a proper subset of
G (i.e. H ≠ G). The trivial subgroup of
any group is the subgroup {e}
consisting of just the identity element.
If H is a subgroup of G, then G is sometimes called an overgroup of H.

The same definitions apply more generally when G is an arbitrary semigroup, but
this article will only deal with subgroups of groups. The group G is sometimes
denoted by the ordered pair (G,*), usually to emphasize the operation * when G
carries multiple algebraic or other structures.

In the following, we follow the usual convention of dropping * and writing the
product a*b as simply ab.
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Basic properties of subgroups

H is a subgroup of the group G if and only if it is nonempty and closed
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under products and inverses. (The closure conditions mean the following:
whenever a and b are in H, then ab and a−1 are also in H. These two
conditions can be combined into one equivalent condition: whenever a and
b are in H, then ab−1 is also in H.) In the case that H is finite, then H is a
subgroup if and only if H is closed under products. (In this case, every
element a of H generates a finite cyclic subgroup of H, and the inverse of a
is then a−1 = an − 1, where n is the order of a.)
The above condition can be stated in terms of a homomorphism; that is, H is
a subgroup of a group G if and only if H is a subset of G and there is an
inclusion homomorphism (i.e., i(a) = a for every a) from H to G.
The identity of a subgroup is the identity of the group: if G is a group with
identity eG, and H is a subgroup of G with identity eH, then eH = eG.
The inverse of an element in a subgroup is the inverse of the element in the
group: if H is a subgroup of a group G, and a and b are elements of H such
that ab = ba = eH, then ab = ba = eG.
The intersection of subgroups A and B is again a subgroup. The union of
subgroups A and B is a subgroup if and only if either A or B contains the
other, since for example 2 and 3 are in the union of 2Z and 3Z but their sum
5 is not. Another example is the union of the x-axis and the y-axis in the
plane (with the addition operation); each of these objects is a subgroup but
their union is not. This also serves as an example of two subgroups, whose
intersection is precisely the identity.
If S is a subset of G, then there exists a minimum subgroup containing S,
which can be found by taking the intersection of all of subgroups containing
S; it is denoted by <S> and is said to be the subgroup generated by S. An
element of G is in <S> if and only if it is a finite product of elements of S
and their inverses.
Every element a of a group G generates the cyclic subgroup <a>. If <a> is
isomorphic to Z/nZ for some positive integer n, then n is the smallest
positive integer for which an = e, and n is called the order of a. If <a> is
isomorphic to Z, then a is said to have infinite order.
The subgroups of any given group form a complete lattice under inclusion,
called the lattice of subgroups. (While the infimum here is the usual
set-theoretic intersection, the supremum of a set of subgroups is the
subgroup generated by the set-theoretic union of the subgroups, not the
set-theoretic union itself.) If e is the identity of G, then the trivial group {e}
is the minimum subgroup of G, while the maximum subgroup is the group G
itself.

Example

Let G be the abelian group whose elements are
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G={0,2,4,6,1,3,5,7}

and whose group operation is addition modulo eight. Its Cayley table is

+ 0 2 4 6 1 3 5 7

0 0 2 4 6 1 3 5 7

2 2 4 6 0 3 5 7 1

4 4 6 0 2 5 7 1 3

6 6 0 2 4 7 1 3 5

1 1 3 5 7 2 4 6 0

3 3 5 7 1 4 6 0 2

5 5 7 1 3 6 0 2 4

7 7 1 3 5 0 2 4 6

This group has a pair of nontrivial subgroups: J={0,4} and H={0,2,4,6}, where
J is also a subgroup of H. The Cayley table for H is the top-left quadrant of the
Cayley table for G. The group G is cyclic, and so are its subgroups. In general,
subgroups of cyclic groups are also cyclic.

Cosets and Lagrange's theorem

Given a subgroup H and some a in G, we define the left coset aH = {ah : h in
H}. Because a is invertible, the map φ : H → aH given by φ(h) = ah is a bijection.
Furthermore, every element of G is contained in precisely one left coset of H; the
left cosets are the equivalence classes corresponding to the equivalence relation
a1 ~ a2 if and only if a1

−1a2 is in H. The number of left cosets of H is called the
index of H in G and is denoted by [G : H].

Lagrange's theorem states that for a finite group G and a subgroup H,

where |G| and |H| denote the orders of G and H, respectively. In particular, the
order of every subgroup of G (and the order of every element of G) must be a
divisor of |G|.
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Right cosets are defined analogously: Ha = {ha : h in H}. They are also the
equivalence classes for a suitable equivalence relation and their number is equal
to [G : H].

If aH = Ha for every a in G, then H is said to be a normal subgroup. Every
subgroup of index 2 is normal: the left cosets, and also the right cosets, are
simply the subgroup and its complement.

See also

Cartan subgroup
Fitting subgroup
stable subgroup
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