Subgroup

From Wikipedia, the free encyclopedia

In the mathematical subject known as group theory, given a group G under a binary operation *, we say that some subset H of G is a **subgroup** of G if H also forms a group under the operation *. More precisely, H is a subgroup of G if the restriction of * to $H \times H$ is a group operation on H. This is usually represented notationally by $H \leq G$, read as "H is a subgroup of G".

A **proper subgroup** of a group G is a subgroup H which is a proper subset of G (i.e. $H \neq G$). The **trivial subgroup** of any group is the subgroup $\{e\}$ consisting of just the identity element.

Basic notions in group theory

category of groups

types of groups

simple,
finite, infinite
discrete, continuous
multiplicative, additive
cyclic, abelian, nilpotent, solvable

If H is a subgroup of G, then G is sometimes called an *overgroup* of H.

The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups. The group G is sometimes denoted by the ordered pair (G,*), usually to emphasize the operation * when G carries multiple algebraic or other structures.

In the following, we follow the usual convention of dropping * and writing the product a*b as simply ab.

Contents

- 1 Basic properties of subgroups
- 2 Example
- 3 Cosets and Lagrange's theorem
- 4 See also

Basic properties of subgroups

lacksquare H is a subgroup of the group G if and only if it is nonempty and closed

under products and inverses. (The closure conditions mean the following: whenever a and b are in H, then ab and a^{-1} are also in H. These two conditions can be combined into one equivalent condition: whenever a and b are in H, then ab^{-1} is also in H.) In the case that H is finite, then H is a subgroup if and only if H is closed under products. (In this case, every element a of H generates a finite cyclic subgroup of H, and the inverse of a is then $a^{-1} = a^{n-1}$, where n is the order of a.)

- The above condition can be stated in terms of a homomorphism; that is, H is a subgroup of a group G if and only if H is a subset of G and there is an inclusion homomorphism (i.e., i(a) = a for every a) from H to G.
- The identity of a subgroup is the identity of the group: if G is a group with identity e_G , and H is a subgroup of G with identity e_H , then $e_H = e_G$.
- The inverse of an element in a subgroup is the inverse of the element in the group: if H is a subgroup of a group G, and a and b are elements of H such that $ab = ba = e_H$, then $ab = ba = e_G$.
- The intersection of subgroups A and B is again a subgroup. The union of subgroups A and B is a subgroup if and only if either A or B contains the other, since for example 2 and 3 are in the union of 2Z and 3Z but their sum 5 is not. Another example is the union of the x-axis and the y-axis in the plane (with the addition operation); each of these objects is a subgroup but their union is not. This also serves as an example of two subgroups, whose intersection is precisely the identity.
- If S is a subset of G, then there exists a minimum subgroup containing S, which can be found by taking the intersection of all of subgroups containing S; it is denoted by <S> and is said to be the subgroup generated by S. An element of G is in <S> if and only if it is a finite product of elements of S and their inverses.
- Every element a of a group G generates the cyclic subgroup < a >. If < a > is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ for some positive integer n, then n is the smallest positive integer for which $a^n = e$, and n is called the *order* of a. If < a > is isomorphic to \mathbb{Z} , then a is said to have *infinite order*.
- The subgroups of any given group form a complete lattice under inclusion, called the lattice of subgroups. (While the infimum here is the usual set-theoretic intersection, the supremum of a set of subgroups is the subgroup *generated by* the set-theoretic union of the subgroups, not the set-theoretic union itself.) If e is the identity of G, then the trivial group $\{e\}$ is the minimum subgroup of G, while the maximum subgroup is the group G itself.

Example

Let G be the abelian group whose elements are

$$G = \{0,2,4,6,1,3,5,7\}$$

and whose group operation is addition modulo eight. Its Cayley table is

+	0	2	4	6	1	3	5	7
0	0	2	4	6	1	3	5	7
2	2	4	6	0	3	5	7	1
4	4	6	0	2	5	7	1	3
6	6	0	2	4	7	1	3	5
1	1	3	5	7	2	4	6	0
3	3	5	7	1	4	6	0	2
5	5	7	1	3	6	0	2	4
7	7	1	3	5	0	2	4	6

This group has a pair of nontrivial subgroups: $J=\{0,4\}$ and $H=\{0,2,4,6\}$, where J is also a subgroup of H. The Cayley table for H is the top-left quadrant of the Cayley table for G. The group G is cyclic, and so are its subgroups. In general, subgroups of cyclic groups are also cyclic.

Cosets and Lagrange's theorem

Given a subgroup H and some a in G, we define the **left coset** $aH = \{ah : h \text{ in } H\}$. Because a is invertible, the map $\phi: H \to aH$ given by $\phi(h) = ah$ is a bijection. Furthermore, every element of G is contained in precisely one left coset of H; the left cosets are the equivalence classes corresponding to the equivalence relation $a_1 \sim a_2$ if and only if $a_1^{-1}a_2$ is in H. The number of left cosets of H is called the index of H in G and is denoted by [G:H].

Lagrange's theorem states that for a finite group G and a subgroup H,

$$[G:H] = \frac{|G|}{|H|}$$

where |G| and |H| denote the orders of G and H, respectively. In particular, the order of every subgroup of G (and the order of every element of G) must be a divisor of |G|.

Right cosets are defined analogously: $Ha = \{ha : h \text{ in } H\}$. They are also the equivalence classes for a suitable equivalence relation and their number is equal to [G:H].

If aH = Ha for every a in G, then H is said to be a normal subgroup. Every subgroup of index 2 is normal: the left cosets, and also the right cosets, are simply the subgroup and its complement.

See also

- Cartan subgroup
- Fitting subgroup
- stable subgroup

Retrieved from "http://en.wikipedia.org/wiki/Subgroup"
Categories: Group theory | Subgroup properties
Hidden categories: Articles needing additional references from June 2009

- This page was last modified on 13 June 2009 at 00:11.
- All text is available under the terms of the GNU Free Documentation License. (See **Copyrights** for details.)
 Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity.