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1 The paper

1.1 Probability model

The likelihood of the full tree is constructed by peeling from the tree tips backwards in time to root of the
tree. Nevertheless, the probability model is a �forward� model - that is, it is assumes that the process begins
at some point and continues for some length of time T and then arrives at the present. This model assumes

Figure 1: Diagram for evolution of a character that a�ects speciation rates. The character starts in state i,
and after a �xed time T has 2 descendants in states x and y. All other descendants (dotted line) go extinct
before time T has fully elapsed. The speciation occurs at time T1 before present.

that all surviving leaf nodes have been sampled.
We note that, while speciation times T1, T2, . . . are random variables, as are the character states at the

internal nodes and the tips, the total duration T of the evolution is a parameter. This may cause some
confusion about what it means to calculate the likelihood of an observed tree with ��xed� speciation times
(and topology). That is, the total time T is ��xed� in the sense of being conditioned on, where as the other
speciation times Ti are ��xed� in a di�erent sense. The times Ti enter the likelihood calculation with a
speci�c value {Ti = T̂i} just like the states at the leaf nodes enter the likelihood calculation. The fact that
this method does not estimate or integrate out the speciation times does not mean that they are not random
in the model.

Thus, the total time is a parameter, but the speciation times are random variables with observed values.
We note that the total time T does not get a dt because it is not random. Thus the probability (density)
for the above �gure is PT,µ,λ(x, y, T1)dT1.
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1.2 Peeling on the tree

We de�ne fij(t, T ) to be the probability that, after elapsed time t, a species in state i has at least one
descendant in state j, and that all other descendants go extinct before time T . To make this more explicit,
we de�ne N(t) to be the number of descendants at time t, and we de�ne gijk(t) to be the probability that
a species in state i has k descendants after elapsed time t and that the �rst one is on state j. We de�ne
the extinction probability E(t) as the probability that after time t a species has no surviving descendants.
Finally, Pi(·) refers to the probability given that the process that starts in state i.

Given these de�nitions, we can derive the following formula for fij(t, T ):

fij(t, T ) = Pi(N(t) > 0 and { a descendent has state j} and { all others go extinct by T})

=
∞∑
k=1

Pi(N(t) = k and { a descendant has state j} and { all others go extinct by T})

=
∞∑
k=1

k∑
l=1

Pi(N(t) = k and { descendant l has state j} and { all others go extinct by T})

=
∞∑
k=1

k∑
l=1

Pi(N(t) = k and { descendant l has state j})× Pi(all others go extinct by T}|foregoing)

=
∞∑
k=1

k∑
l=1

gijk(t)× E(T − t)k−1

=
∞∑
k=1

gijk(t)× k × E(T − t)k−1.

1.3 Likelihood Calculation

We therefore consider a node n with parent p and left and right children l and r. If the node n is not a leaf
node, then likelihood calculation is the following:

Dn,i(tp) = Pi,tp(datan) =
∑
j

fij(tp − tn, tp)× λjdt×Dl,j(tn)×Dr,j(tn)

where tn and tp are the times of the node and its parent, and where datan is understood to include the data
under node n, including tn and other random speciation times, but conditional on the starting time tp. If
the node n is a leaf node, then we would have

Dn,i(tp) = fij(tp, tp)

where time 0 is understood to be the present, where data is collected.

1.4 Likelihood and the exponential

In the speci�c case where speciation and extinction are independent, then fij(t) should separate into a prob-
ability for the state and a probability for the tree. This is because gijk(t) should separate into the probability{
eQt
}
ij
for the state transition and the probability gk(t) that there will be k surviving descendants. Thus,

if independance holds, we have

fij(t, T ) =
∞∑
k=1

{
eQt
}
ij
gk(t)× k × E(T − t)k−1.

=
{
eQt
}
ij
×
∞∑
k=1

gk(t)× k × E(T − t)k−1.
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We know that the matrix exponential displays the special property that eQt1eQt2 = eQ(t1+t2). This in some
sense follows from conditioning on the state X(t1) of a Markov chain at time t1, and invoking the Markov
property to infer that the chain states before and after t1 are conditionally independant if X(t1) is known.
This suggests that the function fij(t, T ) might display a similar factorization.

In fact is does (details not demonstrated), because it also obeys a similar Markov property. That is,
if we take a time interval t1 + t2, then the events that happen before and after t1 and t2 are independent
conditional on what happens at t1. Thus

fij(t1 + t2, T ) =
∑
k

fik(t1, T )fkj(t2, T − t1).

As a result, we also have

Dn,i(tp + ∆) =
∑
j

fij(tp − tn + ∆, tp)× λjdt×Dl,j(tn)×Dr,j(tn)

=
∑
k

fik(∆, tp + ∆)
∑
j

fkj(tp − tn, tp)× λjdt×Dl,j(tn)×Dr,j(tn)

=
∑
k

fik(∆, tp + ∆)Dn,k(tp)

1.5 Di�erential Calculation

This relationship allows us to peel back in time along a branch, as follows:

fij(dt+ t, T ) =
∑
k

fik(dt, T )fkj(t, T ).

Now, fik(dt, T ) has the following form:

fik(dt, T ) =
∞∑
k=1

gijk(dt)× k × E(T − dt)k−1

=
∞∑
k=1

gijk(dt)× k × E(T )k−1.

We therefore consider gijk(dt), which is the probability that a particle of type i gives rise to k particles in
time dt, and one of the particles has type j. For k = 1, 2. . . . we have1

gij1(dt) = (1− µidt)× (1− λidt)× (1i=j + qijdt)
gij2(dt) = (1− µidt)× (λidt)× (1i=j + qijdt),

where qii = −
∑
j 6=iqij . We can ignore k > 2 because this requires that 2 events happen in an interval of

time dt. Multiplying these expressions through and discarding higher powers of dt, we get

gij1(dt) = 1i=j(1− dt(µi + λi)) + qijdt

gij2(dt) = 1i=jλidt.

Therefore, we have

1Note that I wrote 1i=j instead of the more standard Kronecker delta δij to express an identity matrix/identity condition.
This seemed clearer here, but is actually useful notation in other areas.
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fik(dt, T ) = gij1(dt) + 2E(T )× gij2(dt)
= [1i=j(1− dt(µi + λi)) + qijdt] + 2E(T )× [1i=jλidt]
= 1i=j + dt [qij + 1i=j (2E(T )λi − µi − λi)] .

Or, alternately,

fii(dt, T ) = 1 + dt [2E(T )λi − µi − λi + qii]

= 1 + dt

2E(T )λi − µi − λi −
∑
j 6=i

qij


fij(dt, T ) = dt× qij (if j 6= i)

1.6 Di�erential Calculation for likelihood

Applying the above di�erential calculation to the likelihood, we have:

Dn,i(tp + dt) =
∑
k

fik(dt, tp)Dn,k(tp).

Therefore, we have

Dn,i(tp + dt)−Dn,i(tp) = (fii(dt, tp)− 1)Dn,i(tp) +
∑
k 6=i

fik(dt, tp)Dn,k(tp)

= dt

2E(T )λi − µi − λi −
∑
k 6=i

qik

Dn,i(tp) + dt
∑
k 6=i

qikDn,k(tp).

This yields the resulting di�erential equation:

d

dtp
Dn,i(tp) =

2E(T )λi − µi − λi −
∑
k 6=i

qik

Dn,i(tp) +
∑
k 6=i

qikDn,k(tp)

1.7 Forwards di�erential equation

Would it be possible to set up a forwards di�erential equation? What I mean by this is to use the relationship

fij(t+ dt, T ) =
∑
k

fik(t, T )fkj(dt, T − t)

instead of

fij(dt+ t, T ) =
∑
k

fik(dt, T )fkj(t, T ),

thereby conditioning in what happens right before the end of an interval, instead of what happens right
after the start of an interval. (Unlike the Kolmogorov forwards and backwards equations, which are actually
taking derivatives of di�erent variables, these are derivatives of the same variable at di�erent points.)
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2 Conditioning on the sample

How would one take a forwards model like this and turn it into a backwards model?
I presume that this involves running the model for an in�nite length of time, and then looking into the

past. But it is not clear to me how one would do this when/if the population size is in�nite, which I presume
it would be, conditional on not being 0, if λ > µ.
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