
Appendix A: Example test environment
configuration
A test environment contains the minimal set of components needed to deploy a
working OpenStack-Ansible (OSA) environment for testing purposes.

A test environment has the following characteristics:

• One infrastructure (control plane) host (8 vCPU, 8 GB RAM, 60 GB HDD)
• One compute host (8 vCPU, 8 GB RAM, 60 GB HDD)
• One Network Interface Card (NIC) for each host
• A basic compute kit environment, with the Image (glance) and Compute (nova)

services set to use file-backed storage.

Deleted: ¶

Introduction

Deleted: The

Deleted: is

Deleted: a

Deleted: The

Deleted: 8GB

Deleted: 60GB

Deleted: 8GB

Deleted: 60GB

Deleted: Each host only has o

Deleted: Only a

Deleted: will be installed

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/figures/arch-layout-test.png

Network configuration

[If you add a code example here, be sure to also provide a text introduction for it.]

[Code block that is TBD]

Environment configuration

The /etc/openstack_deploy/openstack_user_config.yml configuration file defines which
hosts run the containers and services deployed by OSA. For example, hosts listed in
the shared-infra_hosts section run containers for many of the shared services that your
OpenStack environment requires. Following is an example of the
/etc/openstack_deploy/openstack_user_config.yml configuration file for a test
environment.

[Code block that I didn’t copy]

Deleted: sets

Deleted: the hosts available in the groups. This
designates the services that runs on them.

Appendix B: Example production
environment configuration

A production environment contains the minimal set of components needed to deploy a
working OpenStack-Ansible (OSA) environment for production purposes.

A production environment has the following characteristics:

• Three infrastructure (control plane) hosts
• Two compute hosts
• One storage host
• One log aggregation host
• Two network agent hosts
• Multiple Network Interface Cards (NIC) configured as bonded pairs for each host
• Full compute kit with the Telemetry service (ceilometer) included, with NFS

configured as a storage back end for the Compute (nova), Image (glance), and
Block Storage (cinder) services.

Deleted: ¶

Introduction

Deleted: The

Deleted: is a

Deleted: The

Deleted: 3

Deleted: 2

Deleted: 1

Deleted: 1

Deleted: 2

Deleted: Each host m

Deleted: .

Deleted: The f

Deleted: will be installed

Deleted:

Deleted: -

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/figures/arch-layout-production.png

Network configuration

[Insert an intro to the code block.]

[Code block that I didn’t copy]

Environment configuration

The /etc/openstack_deploy/openstack_user_config.yml configuration file defines which
hosts run the containers and services deployed by OSA. For example, hosts listed in
the shared-infra_hosts section run containers for many of the shared services that your
OpenStack environment requires. Following is an example of the
/etc/openstack_deploy/openstack_user_config.yml configuration file for a production
environment.

[Code block that I didn’t copy]

Deleted: sets the hosts available in the groups.
This designates the services that runs on them

Appendix C: Customizing host and service
layouts
The default layout of containers and services in OpenStack-Ansible (OSA) is determined
by the /etc/openstack_deploy/openstack_user_config.yml file and the contents of both
the /etc/openstack_deploy/conf.d/ and/etc/openstack_deploy/env.d/ directories. You use
these sources to define the group mappings that the playbooks use to target hosts and
containers for roles used in the deployment.

• You define host groups, which gather the target hosts into inventory groups,
through the /etc/openstack_deploy/openstack_user_config.yml file and the
contents of the /etc/openstack_deploy/conf.d/ directory.

• You define container groups, which can map from the service components to be
deployed up to host groups, through files in the
/etc/openstack_deploy/env.d/ directory.

To customize the layout of the components for your deployment, modify the host
groups and container groups appropriately before running the installation playbooks.

Understanding host groups

As part of the initial configuration, each target host appears either in the
/etc/openstack_deploy/openstack_user_config.yml file or in files within the
/etc/openstack_deploy/conf.d/ directory. The format used for files in
the conf.d/ directory is identical to the syntax used in the openstack_user_config.yml file.

In these files, the target hosts are listed under one or more headings, such as shared-
infra_hosts or storage_hosts, which serve as Ansible group mappings. These groups
map to the physical hosts.

The haproxy.yml.example file in the conf.d/ directory provides a simple example of
defining a host group (haproxy_hosts) with two hosts (infra1 and infra2).

The swift.yml.example file provides a more complex example. Here, host variables for a
target host are specified by using the container_vars key. OSA applies all entries under
this key as host-specific variables to any component containers on the specific host.

Deleted: ¶

¶
Understanding the default layout

Deleted: driven

Deleted: Use

Formatted: Font: Italic

Deleted: used by

Comment [KH1]: The end of this sentence
doesn’t quite make sense. I think there might be
a verb missing after “to”?

Deleted: ¶
Conceptually, these can be thought of as
mapping from two directions.

Formatted: List Paragraph, Bulleted + Level: 1
+ Aligned at: 0.25" + Indent at: 0.5"

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Deleted: to represent the layout you desire

Comment [KH2]: Bring this heading up a
level.

Deleted: either

Deleted: We use a

Deleted: which

Deleted: These

Comment [KH3]: Note that I suggest starting
a new paragraph here.

Deleted: We treat t

Deleted: ings as mappings

Deleted: example file

Deleted: A

Deleted: file is swift.yml.example

Deleted: we specify

Deleted: OpenStack-Ansible

Note: To manage file size, we recommend that you define new inventory groups,
particularly for new services, by using a new file in the conf.d/ directory.

Understanding container groups

Additional group mappings are located within files in the /etc/openstack_deploy/env.d/
directory. These groups are treated as virtual mappings from the host groups to the
container groups that define where each service deploys. By reviewing files within
the env.d/ directory, you can begin to see the nesting of groups represented in the
default layout.

For example, the shared-infra.yml file defines a container group, shared-
infra_containers, as a subset of the all_containers inventory group. The shared-
infra_containers container group is mapped to the shared-infra_hosts host group. All of
the service components in the shared-infra_containers container group are deployed to
each target host in the shared-infra_hosts host group.

Within a physical_skel section, the OSA dynamic inventory expects to find a pair of keys.
The first key maps to items in the container_skel section, and the second key maps to
the target host groups that are responsible for hosting the service component.

To continue the example, the memcache.yml file defines the memcache_container container
group. This group is a subset of the shared-infra_containers group, which is itself a
subset of the all_containers inventory group.

Note: The all_containers group is automatically defined by OSA. Any service
component managed by OSA maps to a subset of the all_containers inventory group,
directly or indirectly through another intermediate container group.

The default layout does not rely exclusively on groups being subsets of other groups.
The memcache component group is part of the memcache_container group, as well as
the memcache_all group, and also contains a memcached component group. If you review
the playbooks/memcached-install.yml playbook, you see that the playbook applies to
hosts in the memcached group. Other services might have more complex deployment
needs. They define and consume inventory container groups differently. Mapping
components to several groups in this way allows flexible targeting of roles and tasks.

Deleted: W

Deleted: to be defined

Deleted: in order to manage file size

Comment [KH4]: Bring this heading up a
level.

Deleted: can be found

Deleted: groupings

Deleted: (described above) on

Deleted: which

Deleted: We begin our review with

Deleted: . In this

Deleted: we define

Deleted: new

Deleted: (

Deleted:)

Deleted: This new

Deleted: a new (

Deleted:)

Deleted: This means you deploy a

Deleted: under

Deleted: new (

Deleted:)

Deleted: (shared-infra_hosts)

Deleted: segment

Deleted: OpenStack-Ansible

Deleted: (described above) which

Deleted: Next, we review

Deleted: . Here, we

Deleted: new group

Deleted: In this case we identify the new

Deleted: as

Deleted: OpenStack-Ansible

Deleted: OpenStack-Ansible

Deleted: whether

Deleted: may

Customizing existing components

[Provide an introductory paragraph here.]

Deploy directly on hosts

To deploy a component directly on the host instead of within a container, set
the is_metal property to true for the container group in the container_skel section in
the appropriate file.

The use of container_vars and mapping from container groups to host groups is the
same for a service deployed directly onto the host.

Note: The cinder-volume component is deployed directly on the host by default. See the
env.d/cinder.yml file for this example.

Omit a service or component from the deployment

To omit a component from a deployment, you can use one of several options:

• Remove the physical_skel link between the container group and the host group
by deleting the related file located in the env.d/ directory.

• Do not run the playbook that installs the component. Unless you specify the
component to run directly on a host by using the is_metal property, a container
creates for this component.

• Adjust the affinity to 0 for the host group. Unless you specify the component to
run directly on a host by using the is_metal property, a container creates for this
component.

Deploy existing components on dedicated hosts

To deploy a shared-infra component to dedicated hosts, modify the files that specify the
host groups and container groups for the component.

For example, to run Galera directly on dedicated hosts, you would perform the following
steps:

1. Modify the container_skel section of the env.d/galera.yml file. For example:

container_skel:

Deleted: ing

Deleted: under

Deleted: also

Deleted: exist

Deleted: . The simplest way to do this is to
delete

Deleted: which

Deleted: ,

Comment [KH5]: This doesn’t sound correct.
A container is created? Or, more likely, a
container is not created?

Comment [KH6]: This link is broken.

Comment [KH7]: Again, this doesn’t sound
correct. A container is created? Or, more likely, a
container is not created?

Deleted: ing

Comment [KH8]:
shared infrastructure component
or
shared-infra component

Deleted: on

Deleted: both

Deleted: specifying

Formatted: List Paragraph, Indent: Left:
0.31", Numbered + Level: 1 + Numbering Style:
1, 2, 3, … + Start at: 1 + Alignment: Left +
Aligned at: 0.29" + Indent at: 0.54"

Deleted: segment

Deleted: might look like

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/app-advanced-config-affinity.rst

 galera_container:
 belongs_to:
 - db_containers
 contains:
 - galera
 properties:
 log_directory: mysql_logs
 service_name: galera
 is_metal: true

Note: To deploy within containers on the dedicated hosts, omit the is_metal:
true property.

2. Assign the db_containers container group (from the preceding step) to a host
group by providing a physical_skel section for the host group in a new or
existing file, such as env.d/galera.yml. For example:

physical_skel:
 db_containers:
 belongs_to:
 - all_containers
 db_hosts:
 belongs_to:
 - hosts

3. Define the host group (db_hosts) in a conf.d/ file (such as galera.yml). For
example:

db_hosts:
 db-host1:
 ip: 172.39.123.11
 db-host2:
 ip: 172.39.123.12
 db-host3:
 ip: 172.39.123.13

Note: Each of the custom group names in this example (db_containers and db_hosts) are
arbitrary. Choose your own group names, but ensure that the references are consistent
among all relevant files.

Deleted: If you want to

Deleted: se

Deleted: We include it here as a recipe for
the more commonly requested layout.

Deleted: Since we define the new container
group (db_containers above), we must
assign that container group to a host group.
To assign

Deleted: new

Deleted: new

Deleted: ,

Deleted: e

Deleted: new

Deleted: (

Deleted:)

Deleted: Lastly, d

Formatted: code_body Char, Font: 11 pt, Font
color: Auto

Deleted: above

Deleted: were

Deleted: You can c

Deleted: be sure

Deleted: between

Appendix D: Security

Security is one of the top priorities within OpenStack-Ansible (OSA), and many security
enhancements for OpenStack clouds are available in deployments by default. This
appendix provides a detailed overview of the most important security enhancements.

Note: Every deployer has different security requirements based on business needs,
regulatory requirements, or end-user demands. The OpenStack Security Guide has
instructions and advice on how to operate and consume an OpenStack cloud by using
the most secure methods.

Encrypted communication

Any OpenStack cloud has sensitive information transmitted between services, including
user credentials, service credentials, or information about resources being created.
Encrypting this traffic is critical in environments where the network cannot be
trusted. (For more information about securing the network, see the :ref:`least-access-
openstack-services` section.)

Many of the services deployed with OSA are encrypted by default or offer encryption as
an option. The playbooks generate self-signed certificates by default, but deployers
have the option to use their existing certificates, keys, and CA certificates.

To learn more about how to customize the deployment of encrypted communications,
see Securing services with SSL certificates.

Host security hardening

OSA provides a comprehensive security hardening role that applies over 200 security
configurations as recommended by the Security Technical Implementation Guide (STIG)
provided by the Defense Information Systems Agency (DISA). These security
configurations are widely used and are distributed in the public domain by the United
States government.

Deleted: serves as

Deleted: improvements

Comment [KH1]: Because Appendix F has
advanced security configuration information in
it, we might consider referring users to
Appendix F from this intro. Add a sentence here,
something like: “For information about
configuring security, see Appendix F.”

Deleted: will have

Deleted: their

Deleted: official

Deleted: plenty of

Deleted: via

Deleted: will have

Deleted: . This information

Deleted: es

Deleted: may not

Deleted: Review

Formatted: Font: Not Italic

Deleted: below for more details on securing
the network

Deleted: OpenStack-Ansible

Deleted: review

Deleted: the

Deleted: documentation section

Deleted: OpenStack-Ansible offers

Deleted: uses

Deleted: Government

http://docs.openstack.org/security-guide
https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/app-advanced-config-sslcertificates.html
http://docs.openstack.org/developer/openstack-ansible-security/
https://en.wikipedia.org/wiki/Security_Technical_Implementation_Guide
http://www.disa.mil/

Host security hardening is required by several compliance and regulatory programs,
such as the Payment Card Industry Data Security Standard (PCI DSS) (Requirement 2.2).

By default, OSA automatically applies the security hardening role to all deployments.
The role has been carefully designed to perform as follows:

• Apply nondisruptively to a production OpenStack environment

• Balance security with OpenStack performance and functionality

• Run as quickly as possible

For more information about configuring the role in OSA, see :ref:`security_hardening`.

Isolation

By default, OSA provides isolation between the containers that run the OpenStack
infrastructure (control plane) services and also between the virtual machines that end
users spawn within the deployment. This isolation is critical because it can prevent
container or virtual machine breakouts, or at least reduce the damage that breakouts
might cause.

The Linux Security Modules (LSM) framework allows administrators to set mandatory
access controls (MAC) on a Linux system. MAC is different than discretionary access
controls (DAC) because the kernel enforces strict policies that no user can bypass.
Although any user might be able to change a DAC policy (such as chown bob secret.txt),
only the root user can alter a MAC policy.

OSA currently uses AppArmor to provide MAC policies on infrastructure servers and
hypervisors. The AppArmor configuration sets the access policies to prevent one
container from accessing the data of another container. For virtual machines,
libvirtd uses the sVirt extensions to ensure that one virtual machine cannot access the
data or devices from another virtual machine.

These policies are applied and governed at the kernel level. Any process that violates a
policy is denied access to the resource. All denials are logged in auditd and are available
at /var/log/audit/audit.log.

Formatted: Font: Not Italic

Deleted: see

Deleted: OpenStack-Ansible

Deleted: by default, but this can be disabled
via an Ansible variable

Deleted: -

Deleted: Refer to the documentation on

Deleted: for more information on the role in
OpenStack-Ansible

Deleted: OpenStack-Ansible

Deleted: by default

Deleted: since

Deleted: they may

Deleted: This

Deleted: cannot be

Deleted: ed by any user

Deleted: a

Deleted: may

Deleted: they cannot

Deleted: This privilege is reserved for
the root user.

Deleted: OpenStack-Ansible

Deleted: control plane

Deleted: as well as

Deleted: will be

Deleted: with

https://www.pcisecuritystandards.org/pci_security/
https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/app-security.rst%23id1
https://en.wikipedia.org/wiki/Linux_Security_Modules
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control
https://en.wikipedia.org/wiki/AppArmor
https://fedoraproject.org/wiki/Features/SVirt_Mandatory_Access_Control

Least privilege

The principle of least privilege is used throughout OSA to limit the damage that could
be caused if an attacker gains access to any credentials.

OSA configures unique username and password combinations for each service that
interacts with RabbitMQ and Galera/MariaDB. Each service that connects to RabbitMQ
uses a separate virtual host for publishing and consuming messages. The MariaDB users
for each service are granted access only to the databases that they need to query.

Securing network access to OpenStack services

OpenStack clouds provide many services to end users that enable them to build
instances, provision storage, and create networks. Each of these services exposes one or
more service ports and API endpoints to the network.

However, some of the services within an OpenStack cloud are accessible to all end users,
while others are accessible only to administrators or operators on a secured network.

• Services that all end users can access
o These services include Compute (nova), Object Storage (swift), Networking

(neutron), and Image (glance).

o These services should be offered on a sufficiently restricted network that
still allows all end users to access the services.

o A firewall must be used to restrict access to the network.

• Services that only administrators or operators can access
o These services include MariaDB, Memcached, RabbitMQ, and the admin

API endpoint for the Identity (keystone) service.

o These services must be offered on a highly restricted network that is
available only to administrative users.

o A firewall must be used to restrict access to the network.

Limiting access to these networks has several benefits:

• Allows for network monitoring and alerting

Deleted: OpenStack-Ansible

Deleted: OpenStack-Ansible

Deleted: talks to

Deleted: only

Deleted: database(s)

Deleted: offer

Deleted: which allow

Deleted: clouds

Deleted: should be

Deleted: exposed

Deleted: should only be

Deleted: available

Deleted: OpenStack services fit into one of two
criteria:¶

Formatted: Font: Not Bold, Italic

Deleted: This includes

Deleted: such as

Formatted: Font: Not Bold, Italic

Deleted: This includes services such as

Deleted: memcached

Formatted: Font: Not Bold, Italic

https://en.wikipedia.org/wiki/Principle_of_least_privilege

• Prevents unauthorized network surveillance

• Reduces the chance of credential theft

• Reduces damage from unknown or unpatched service vulnerabilities

OSA deploys HAProxy back ends for each service and restricts access for highly sensitive
services by making them available only on the management network. Deployers with
external load balancers must ensure that the back ends are configured securely and that
firewalls prevent traffic from crossing between networks.

For more information about recommended network policies for OpenStack clouds, see
the API endpoint process isolation and policy section of the OpenStack Security Guide.

Deleted: OpenStack-Ansible

Deleted: backends

Deleted: backends

Deleted: details on

Deleted: refer to

Deleted: from

http://docs.openstack.org/security-guide/api-endpoints/api-endpoint-configuration-recommendations.html%23network-policy
http://docs.openstack.org/security-guide

Appendix E: Container networking
OpenStack-Ansible (OSA) deploys Linux containers (LXC) and uses Linux bridging
between the container interfaces and the host interfaces to ensure that all traffic from
containers flows over multiple host interfaces. This appendix describes how the
interfaces are connected and how traffic flows.

For more information about how the OpenStack Networking service (neutron) uses the
interfaces for instance traffic, see the OpenStack Networking Guide.

Bonded network interfaces

In a typical production environment, physical network interfaces are combined in
bonded pairs for better redundancy and throughput. Avoid using two ports on the same
multiport network card for the same bonded interface, because a network card failure
affects both of the physical network interfaces used by the bond.

Linux bridges

The combination of containers and flexible deployment options requires
implementation of advanced Linux networking features, such as bridges and
namespaces.

• Bridges provide layer 2 connectivity (similar to switches) among physical, logical, and
virtual network interfaces within a host. After a bridge is created, the network
interfaces are virtually plugged in to it.

OSA uses bridges to connect physical and logical network interfaces on the host to
virtual network interfaces within containers.

• Namespaces provide logically separate layer 3 environments (similar to routers)
within a host. Namespaces use virtual interfaces to connect with other namespaces,
including the host namespace. These interfaces, often called veth pairs, are virtually
plugged in between namespaces, similar to patch cables connecting physical devices
such as switches and routers.

Each container has a namespace that connects to the host namespace with one or
more veth pairs. Unless specified, the system generates random names for veth pairs.

Deleted: LXC machine

Deleted: linux

Deleted: flow

Deleted: This

Comment [KH1]: I don’t think you need to
say what issue the architecture avoids. It is
enough to just state how it works.

Deleted: is to avoid traffic flowing through the
default LXC bridge which is a single host
interface (and therefore could become a
bottleneck), and which is interfered with by
iptables.¶

Deleted: intends to

Deleted: details

Deleted: please

Deleted: A

Deleted: uses multiple

Deleted: a

Deleted: pair

Deleted: We recommend avoiding the use of

Deleted: -

Deleted: . This is

Deleted: require

Formatted: List Paragraph, Indent: Left: 0",
Bulleted + Level: 1 + Aligned at: 0.25" +
Indent at: 0.5"

Deleted: creating

Deleted: OpenStack-Ansible

Formatted: List Paragraph, Indent: Left: 0",
Bulleted + Level: 1 + Aligned at: 0.25" +
Indent at: 0.5"

http://docs.openstack.org/networking-guide/

The following image demonstrates how the container network interfaces are connected
to the host's bridges and physical network interfaces:

Deleted: to the host's

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/figures/networkcomponents.png

Network diagrams

The following digram shows how all of the interfaces and bridges interconnect to
provide network connectivity to the OpenStack deployment:

Comment [KH2]: Rather than having one
general heading for all four diagrams, consider
creating a separate descriptive heading for each
one. This one could be “Overall network
connectivity” (or something like that).

Deleted: image

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/figures/networkarch-container-external.png

OSA deploys the Compute service on the physical host rather than in a container. The
following diagram shows how to use bridges for network connectivity:

The following diagram shows how the Networking service (neutron) agents work with
the br-vlan and br-vxlan bridges. Neutron is configured to use a DHCP agent, an L3
agent, and a Linux Bridge agent within a networking-agents container. The diagram
shows how DHCP agents provide information (IP addresses and DNS servers) to the
instances, and how routing works on the image.

Deleted: OpenStack-Ansible

Deleted: image

Deleted: image

Deleted: bridges

Deleted: image

Deleted: :

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/figures/networkarch-bare-external.png

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/figures/networking-neutronagents.png

The following diagram shows how virtual machines connect to the br-vlan and br-
vxlan bridges and send traffic to the network outside the host:

Deleted: image

https://github.com/openstack/openstack-ansible/blob/master/doc/source/install-guide/figures/networking-compute.png

Appendix F: Advanced configuration
 [I suggest adding an intro paragraph that will appear on the main appendix page,
following the TOC (here). It should explain what advanced configuration is, whether it’s
required or optional, and when someone should do it. Users coming to this appendix
should immediately get a sense of whether it applies to them and their situation or not.]

Overriding OpenStack configuration defaults
OpenStack has many configuration options available in .conf files (in a standard INI file
format), policy files (in a standard JSON format), and YAML files.

Note: YAML files are only in the ceilometer project at this time.

OpenStack-Ansible (OSA) enables you to reference any options in the OpenStack
Configuration Reference through the use of a simple set of configuration entries in the
/etc/openstack_deploy/user_variables.yml file. This section describes how to use the
configuration entries in the /etc/openstack_deploy/user_variables.yml file to override
default configuration settings.

For more information, see the Setting overrides in configuration files section in the
developer documentation.

Overriding .conf files

Most often, overrides are implemented for the <service>.conf files (for example,
nova.conf). These files use a standard INI file format.

For example, you might want to add the following parameters to the nova.conf file:

[DEFAULT]
remove_unused_original_minimum_age_seconds = 43200

[libvirt]
cpu_mode = host-model
disk_cachemodes = file=directsync,block=none

[database]
idle_timeout = 300
max_pool_size = 10

Deleted: configuration files which are in the
form of

Deleted: also

Comment [KH1]: I am a little confused by
this. Most of the basic configuration files that
have been mentioned in the guide so far are
.yml files. In fact, the main configuration file
mentioned in this section is a .yml file
(user_variables.yml). Isn’t .yml a file
extension for YAML files? If so, then this
statement seems a little confusing, because
obviously YAML files aren’t only in the
ceilometer project (unless I am reading it
wrong).

Deleted: provides the facility to include

Deleted: to

Deleted: ¶
¶

Deleted: provides guidance for

Deleted: make

Deleted: of this facility. Further guidance is
available in the developer documentation in the
section titled

Comment [KH2]: Do not apply formatting to
parts of headings. Use just normal format for
.conf.

Deleted: The most common use-case for
implementing

Deleted: if

http://docs.openstack.org/draft/config-reference/
http://docs.openstack.org/draft/config-reference/
https://github.com/openstack/openstack-ansible/blob/master/doc/source/developer-docs/extending.html%23setting-overrides-in-configuration-files

To do this, you use the following configuration entry in the
/etc/openstack_deploy/user_variables.yml file:

nova_nova_conf_overrides:
 DEFAULT:
 remove_unused_original_minimum_age_seconds: 43200
 libvirt:
 cpu_mode: host-model
 disk_cachemodes: file=directsync,block=none
 database:
 idle_timeout: 300
 max_pool_size: 10

Note: The general format for the variable names used for overrides is
<service>_<filename>_<file extension>_overrides. For example, the variable name used
in these examples to add parameters to the nova.conf file is nova_nova_conf_overrides.

You can also apply overrides on a per-host basis with the following configuration in the
/etc/openstack_deploy/openstack_user_config.yml file:

compute_hosts:
 900089-compute001:
 ip: 192.0.2.10
 host_vars:
 nova_nova_conf_overrides:
 DEFAULT:
 remove_unused_original_minimum_age_seconds: 43200
 libvirt:
 cpu_mode: host-model
 disk_cachemodes: file=directsync,block=none
 database:
 idle_timeout: 300
 max_pool_size: 10

Use this method for any files with the INI format for in OpenStack projects deployed in
OSA.

Overriding .json files

To implement access controls that are different from the ones in a standard OpenStack
environment, you can adjust the default policies applied by services. Policy files are in
a JSON format.

Deleted: This is accomplished through the

Deleted: of

Comment [KH3]: Make this a note (or a tip),
and place it here. Having the information here
(rather than at the end of the section) helps
users understand the examples.

Deleted: O

Deleted: may also be applied

Deleted: file

Deleted: all

Deleted: OpenStack-Ansible

Deleted: To assist you in finding the
appropriate variable name to use for overrides,
the general format for the variable name
is:<service>_<filename>_<file
extension>_overrides.

Comment [KH4]: Do not apply formatting to
parts of headings. Use just normal format for
.json.

Deleted: Y

Deleted: in order to implement access
controls which are different to a standard
OpenStack environment

For example, you might want to add the following policy in the policy.json file for the
Identity service (keystone):

{
 "identity:foo": "rule:admin_required",
 "identity:bar": "rule:admin_required"
}

To do this, you use the following configuration entry in the
/etc/openstack_deploy/user_variables.yml file:

keystone_policy_overrides:
 identity:foo: "rule:admin_required"
 identity:bar: "rule:admin_required"

Note: The general format for the variable names used for overrides is
<service>_policy_overrides. For example, the variable name used in this example to add
a policy to the Identity service (keystone) policy.json file is keystone_policy_overrides.

Use this method for any files with the JSON format in OpenStack projects deployed in
OSA.

Overriding YAML files

You can override .yml file values by supplying replacement YAML content.

Note: All default YAML file content is completely overwritten by the overrides, so the
entire YAML source (both the existing content and your changes) must be provided.

For example, you might want to define a meter exclusion for all hardware items in the
default content of the pipeline.yml file for the Telemetry service (ceilometer):

sources:
 - name: meter_source
 interval: 600
 meters:
 - "!hardware.*"
 sinks:
 - meter_sink
 - name: foo_source
 value: foo

Deleted: can

Deleted: keystone's

Deleted: Accomplish this through the

Deleted: of

Comment [KH5]: Make this a note (or a tip),
and place it here. Having the information here
(rather than at the end of the section) helps
users understand the examples.

Deleted: all

Deleted: OpenStack-Ansible

Deleted: with JSON file formats

Deleted: To assist you in finding the
appropriate variable name to use for overrides,
the general format for the variable name
is<service>_policy_overrides.

Comment [KH6]: Change this to .yml or
.yaml, whichever is correct. (The intro paragraph
uses .yml, but there is some confusion as to
which extension is correct. Are they both
correct? Or just one of them? If both, then retain
the use of YAML in the heading. If just one, then
be consistent.)

Deleted: will be

Deleted: provided

Deleted: can

Deleted: ceilometer's

To do this, you use the following configuration entry in the
/etc/openstack_deploy/user_variables.yml file:

ceilometer_pipeline_yaml_overrides:
 sources:
 - name: meter_source
 interval: 600
 meters:
 - "!hardware.*"
 sinks:
 - meter_sink
 - name: source_foo
 value: foo

Note: The general format for the variable names used for overrides is
<service>_<filename>_<file extension>_overrides. For example, the variable name used
in this example to define a meter exclusion in the pipeline.yml file for the Telemetry
service (ceilometer) is ceilometer_pipeline_yaml_overrides.

Currently available overrides

The following override variables are available.

Galera

• galera_client_my_cnf_overrides
• galera_my_cnf_overrides
• galera_cluster_cnf_overrides
• galera_debian_cnf_overrides

Telemetry service (ceilometer)

• ceilometer_policy_overrides
• ceilometer_ceilometer_conf_overrides
• ceilometer_api_paste_ini_overrides
• ceilometer_event_definitions_yaml_overrides
• ceilometer_event_pipeline_yaml_overrides
• ceilometer_pipeline_yaml_overrides

Deleted: You can accomplish this through the

Deleted: of

Comment [KH7]: The paragraph that
precedes the example says pipeline.yml, not
pipeline.yaml.

Comment [KH8]: Use whatever the correct
extension is here.

Deleted: To assist you in finding the
appropriate variable name to use for overrides,
the general format for the variable name
is<service>_<filename>_<file
extension>_overrides.

Deleted: is a list of

Deleted: :

Deleted: :

Deleted: C

Deleted: :

Block Storage service (cinder)

• cinder_policy_overrides
• cinder_rootwrap_conf_overrides
• cinder_api_paste_ini_overrides
• cinder_cinder_conf_overrides

Image service (glance)

• glance_glance_api_paste_ini_overrides
• glance_glance_api_conf_overrides
• glance_glance_cache_conf_overrides
• glance_glance_manage_conf_overrides
• glance_glance_registry_paste_ini_overrides
• glance_glance_registry_conf_overrides
• glance_glance_scrubber_conf_overrides
• glance_glance_scheme_json_overrides
• glance_policy_overrides

Orchestration service (heat)

• heat_heat_conf_overrides
• heat_api_paste_ini_overrides
• heat_default_yaml_overrides
• heat_aws_cloudwatch_alarm_yaml_overrides
• heat_aws_rds_dbinstance_yaml_overrides
• heat_policy_overrides

Identity service (keystone)

• keystone_keystone_conf_overrides
• keystone_keystone_default_conf_overrides
• keystone_keystone_paste_ini_overrides
• keystone_policy_overrides

Networking service (neutron)

• neutron_neutron_conf_overrides

Deleted: C

Deleted: :

Deleted: G

Deleted: :

Deleted: H

Deleted: :

Deleted: K

Deleted: :

Deleted: N

Deleted: :

• neutron_ml2_conf_ini_overrides
• neutron_dhcp_agent_ini_overrides
• neutron_api_paste_ini_overrides
• neutron_rootwrap_conf_overrides
• neutron_policy_overrides
• neutron_dnsmasq_neutron_conf_overrides
• neutron_l3_agent_ini_overrides
• neutron_metadata_agent_ini_overrides
• neutron_metering_agent_ini_overrides

Compute service (nova)

• nova_nova_conf_overrides
• nova_rootwrap_conf_overrides
• nova_api_paste_ini_overrides
• nova_policy_overrides

Object Storage service (swift)

• swift_swift_conf_overrides
• swift_swift_dispersion_conf_overrides
• swift_proxy_server_conf_overrides
• swift_account_server_conf_overrides
• swift_account_server_replicator_conf_overrides
• swift_container_server_conf_overrides
• swift_container_server_replicator_conf_overrides
• swift_object_server_conf_overrides
• swift_object_server_replicator_conf_overrides

Tempest

• tempest_tempest_conf_overrides

pip

• pip_global_conf_overrides

Deleted: N

Deleted: :

Deleted: S

Deleted: :

Comment [KH9]: What is Tempest? Should
we qualify it here with something? Something
like:

Tempest (testing project)

Deleted: :

Deleted: :

Security hardening
OpenStack-Ansible (OSA) automatically applies host security hardening configurations
by using the openstack-ansible-security role. The role uses a version of the Security
Technical Implementation Guide (STIG) that has been adapted for Ubuntu 14.04 and
OpenStack.

The role is applicable to physical hosts within an OSA deployment that are operating as
any type of node, infrastructure or compute. By default, the role is enabled. You can
disable it by changing the value of the apply_security_hardening variable in
the user_variables.yml file to false:

apply_security_hardening: false

You can apply security hardening configurations to an existing environment or audit an
environment by using a playbook supplied with OSA:

Apply security hardening configurations
openstack-ansible security-hardening.yml

Perform a quick audit by using Ansible's check mode
openstack-ansible --check security-hardening.yml

For more information about the security configurations, see the OSA host security
hardening documentation

Comment [KH10]: What about Ubuntu 16.04?

Deleted: OpenStack-Ansible

Deleted: a

Deleted: with

Deleted: ¶
When the variable is set to true, the setup-
hosts.yml playbook applies the role during
deployments.¶

Deleted: OpenStack-Ansible

Deleted: ¶
Apply security hardening
configurations¶
openstack-ansible security-
hardening.yml¶

Deleted: Refer to

Deleted: openstack-ansible-security

Comment [KH11]: The two references that
were in this paragraph pointed to the same doc,
but to different versions of it. My edit suggests
pointing to it just once. If you want to refer to it
twice, ensure that the links are correct.

Deleted: for more details on the security
configurations. Review theConfiguration section
of the openstack-ansible-security
documentation to find out how to fine-tune
certain security configurations.

http://docs.openstack.org/developer/openstack-ansible-security/
https://en.wikipedia.org/wiki/Security_Technical_Implementation_Guide
https://en.wikipedia.org/wiki/Security_Technical_Implementation_Guide
http://docs.openstack.org/developer/openstack-ansible-security/
http://docs.openstack.org/developer/openstack-ansible-security/

Securing services with SSL certificates
The OpenStack Security Guide recommends providing secure communication between
various services in an OpenStack deployment. The OpenStack-Ansible (OSA) project
currently offers the ability to configure SSL certificates for secure communication with
the following services:

• HAProxy
• Dashboard (horizon)
• Identity (keystone)
• RabbitMQ

For each service, you can either use self-signed certificates that are generated during
the deployment process or provide SSL certificates, keys, and CA certificates from your
own trusted certificate authority. Highly secured environments use trusted, user-
provided certificates for as many services as possible.

Note: Perform all SSL certificate configuration in
the /etc/openstack_deploy/user_variables.yml file and not in the playbook roles
themselves.

Self-signed certificates

Self-signed certificates enable you to start quickly and encrypt data in transit. However,
they do not provide a high level of trust for highly secure environments.

By default, self-signed certificates are used in (OSA). When self-signed certificates are
used, you must disable certificate verification by using the following user variables,
depending on your configuration. Add these variables in
the /etc/openstack_deploy/user_variables.yml file.

keystone_service_adminuri_insecure: true
keystone_service_internaluri_insecure: true

Deleted: ¶

Deleted: H

Deleted: K

Deleted: have the option to

Deleted: ,

Deleted: Conduct

Deleted: ensure you are able

Deleted: you are able to

Deleted: The use of

Deleted: is currently the default

Deleted: OpenStack-Ansible

Deleted: being

Deleted: must be disabled

http://docs.openstack.org/security-guide/secure-communication.html

Setting subject data for self-signed certificates

Change the subject data of any self-signed certificate by using configuration variables.
The configuration variable for each service is formatted
as <servicename>_ssl_self_signed_subject. For example, to change the SSL certificate
subject data for HAProxy, adjust the /etc/openstack_deploy/user_variables.yml file as
follows:

haproxy_ssl_self_signed_subject: "/C=US/ST=Texas/L=San
Antonio/O=IT/CN=haproxy.example.com"

For more information about the available fields in the certificate subject, see the
OpenSSL documentation for the req subcommand.

Generating and regenerating self-signed certificates

Self-signed certificates are generated for each service during the first run of the
playbook.

 To generate a new self-signed certificate for a service, you must set
the <servicename>_ssl_self_signed_regen variable to true in one of the following ways:

• To force a self-signed certificate to regenerate, pass the variable to openstack-
ansible on the command line. For example:

openstack-ansible -e "horizon_ssl_self_signed_regen=true" os-horizon-
install.yml

• To force a self-signed certificate to regenerate with every playbook run, set the
appropriate regeneration option to true in
the /etc/openstack_deploy/user_variables.yml file. For example, if you have already
run the os-horizon playbook but you want to regenerate the self-signed certificate,
set the horizon_ssl_self_signed_regen variable to true:

horizon_ssl_self_signed_regen: true

Note: Regenerating self-signed certificates replaces the existing certificates whether
they are self-signed or user-provided.

Deleted: subject data

Deleted: To

Deleted: refer to

Deleted: 's

Deleted: on

Deleted: Generate s

Deleted: Note: Subsequent runs of the
playbook do not generate new SSL certificates
unless you

Deleted: set

Deleted: to

Deleted: .

Formatted: Bulleted + Level: 1 + Aligned at:
0" + Indent at: 0.25"

Comment [KH12]: Does this method
regenerate the certificate only once? Or does it
set it to regenerate on every playbook run, like
the following method? If just once, then revise
this to say, “To force a self-signed certificate to
regenerate once, …”

If both methods do the same thing, then revise
the intro and bullet text as follows:

To generate a new self-signed certificate for a
service every time a playbook runs, you must set
the <servicename>_ssl_self_signed_regen
variable to true in one of the following ways:

• Pass the variable to …

• Set the appropriate regeneration option to
true in the …

Deleted: you can

Formatted: Bulleted + Level: 1 + Aligned at:
0" + Indent at: 0.25"

Deleted: ,

Deleted: in
/etc/openstack_deploy/user_variables.
yml

https://www.openssl.org/docs/manmaster/apps/req.html

User-provided certificates

For added trust in highly secure environments, you can provide your own SSL
certificates, keys, and CA certificates. Acquiring certificates from a trusted certificate
authority is outside the scope of this document, but the Certificate Management section
of the Linux Documentation Project explains how to create your own certificate
authority and sign certificates.

Use the following process to deploy user-provided SSL certificates in OSA:

1. Copy your SSL certificate, key, and CA certificate files to the deployment host.

2. Specify the path to your SSL certificate, key, and CA certificate in
the /etc/openstack_deploy/user_variables.yml file.

3. Run the playbook for that service.

For example, to deploy user-provided certificates for RabbitMQ, copy the certificates to
the deployment host, edit the/etc/openstack_deploy/user_variables.yml file, and set the
following three variables:

rabbitmq_user_ssl_cert: /tmp/example.com.crt
rabbitmq_user_ssl_key: /tmp/example.com.key
rabbitmq_user_ssl_ca_cert: /tmp/ExampleCA.crt

Then, run the playbook to apply the certificates:

openstack-ansible rabbitmq-install.yml

The playbook deploys your user-provided SSL certificate, key, and CA certificate to each
RabbitMQ container.

The process is identical for the other services. Replace rabbitmq in the preceding
configuration variables with horizon, haproxy, or keystone, and then run the playbook for
that service to deploy user-provided certificates to those services.

Deleted: Y

Deleted: for added trust in highly secure
environments

Deleted: Deploying

Comment [KH13]: Or would it be
“OpenStack”?

Deleted: is a three step process

Comment [KH14]: Copy them just anywhere
on the host? Does it matter?

Deleted: Run

Deleted: to

Deleted: shown above

Deleted:

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/c118.html

Affinity
When OpenStack-Ansible (OSA) generates its dynamic inventory, the affinity setting
determines how many containers of a similar type are deployed on a single physical
host.

Using shared-infra_hosts as an example, consider this openstack_user_config.yml
configuration:

shared-infra_hosts:
 infra1:
 ip: 172.29.236.101
 infra2:
 ip: 172.29.236.102
 infra3:
 ip: 172.29.236.103

Three hosts are assigned to the shared-infra_hosts group. OSA ensures that each host
runs a single database container, a single Memcached container, and a single RabbitMQ
container. Each host has an affinity of 1 by default, which means that each host runs one
of each container type.

If you are deploying a stand-alone Object Storage (swift) environment, you can skip the
deployment of RabbitMQ. If you use this configuration, your openstack_user_config.yml
file would look as follows:

shared-infra_hosts:
 infra1:
 affinity:
 rabbit_mq_container: 0
 ip: 172.29.236.101
 infra2:
 affinity:
 rabbit_mq_container: 0
 ip: 172.29.236.102
 infra3:
 affinity:
 rabbit_mq_container: 0
 ip: 172.29.236.103

This configuration deploys a Memcached container and a database container on each
host, but no RabbitMQ containers.

Deleted: 's dynamic

Deleted:

Deleted: generation has a concept called
affinity. This

Deleted: to

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: ,

Deleted: OpenStack-Ansible

Deleted: memcached

Deleted: and that means

Deleted: will

Deleted: Y

Deleted: altogether. This is helpful when
deploying a standalone swift environment.

Deleted: need

Deleted: like this

Deleted: The

Deleted: above

Deleted: memcached

Deleted: without

Deleted: the

Advanced service configuration
OpenStack-Ansible (OSA) has many options that you can use for the advanced
configuration of services. Each role's documentation provides information about the
available options.

The following options are optional.

Infrastructure service roles

• galera_server
• haproxy_server
• memcached_server
• rabbitmq_server
• repo_build
• repo_server
• rsyslog_server

OpenStack service roles

• os_aodh
• os_ceilometer
• os_cinder
• os_glance
• os_gnocchi
• os_heat
• os_horizon
• os_ironic
• os_keystone
• os_magnum
• os_neutron
• os_nova
• os_rally
• os_sahara
• os_swift

Deleted: which can be used

Deleted: more insight into

Deleted: available and what they are used for

Deleted: not necessary to set - they are
entirely

http://docs.openstack.org/developer/openstack-ansible-galera_server
http://docs.openstack.org/developer/openstack-ansible-haproxy_server
http://docs.openstack.org/developer/openstack-ansible-memcached_server
http://docs.openstack.org/developer/openstack-ansible-rabbitmq_server
http://docs.openstack.org/developer/openstack-ansible-repo_build
http://docs.openstack.org/developer/openstack-ansible-repo_server
http://docs.openstack.org/developer/openstack-ansible-rsyslog_server
http://docs.openstack.org/developer/openstack-ansible-os_aodh
http://docs.openstack.org/developer/openstack-ansible-os_ceilometer
http://docs.openstack.org/developer/openstack-ansible-os_cinder
http://docs.openstack.org/developer/openstack-ansible-os_glance
http://docs.openstack.org/developer/openstack-ansible-os_gnocchi
http://docs.openstack.org/developer/openstack-ansible-os_heat
http://docs.openstack.org/developer/openstack-ansible-os_horizon
http://docs.openstack.org/developer/openstack-ansible-os_ironic
http://docs.openstack.org/developer/openstack-ansible-os_keystone
http://docs.openstack.org/developer/openstack-ansible-os_magnum
http://docs.openstack.org/developer/openstack-ansible-os_neutron
http://docs.openstack.org/developer/openstack-ansible-os_nova
http://docs.openstack.org/developer/openstack-ansible-os_rally
http://docs.openstack.org/developer/openstack-ansible-os_sahara
http://docs.openstack.org/developer/openstack-ansible-os_swift

• os_tempest

Other roles

• ansible-plugins
• apt_package_pinning
• ceph_client
• galera_client
• lxc_container_create
• lxc_hosts
• pip_install
• openstack_openrc
• openstack_hosts
• rsyslog_client

http://docs.openstack.org/developer/openstack-ansible-os_tempest
http://docs.openstack.org/developer/openstack-ansible-plugins
http://docs.openstack.org/developer/openstack-ansible-apt_package_pinning/
http://docs.openstack.org/developer/openstack-ansible-ceph_client
http://docs.openstack.org/developer/openstack-ansible-galera_client
http://docs.openstack.org/developer/openstack-ansible-lxc_container_create
http://docs.openstack.org/developer/openstack-ansible-lxc_hosts
http://docs.openstack.org/developer/openstack-ansible-pip_install/
http://docs.openstack.org/developer/openstack-ansible-openstack_openrc
http://docs.openstack.org/developer/openstack-ansible-openstack_hosts
http://docs.openstack.org/developer/openstack-ansible-rsyslog_client

Appendix G: Additional resources
Ansible resources:

• Ansible Documentation
• Ansible Best Practices
• Ansible Configuration

OpenStack resources:

• OpenStack Documentation
• OpenStack SDK, CLI, and API Documentation
• OpenStack API Guide
• OpenStack Project Developer Documentation

Deleted: The following

Deleted: are useful to reference

Deleted: The following

Deleted: are useful to reference

http://docs.ansible.com/ansible/
http://docs.ansible.com/ansible/playbooks_best_practices.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.openstack.org/
http://developer.openstack.org/
http://developer.openstack.org/api-guide/quick-start
http://docs.openstack.org/developer/

	app-a_editsKH
	Appendix A: Example test environment configuration
	Network configuration
	Environment configuration

	app-b_editsKH
	Appendix B: Example production environment configuration
	Network configuration
	Environment configuration

	app-c_editsKH
	Appendix C: Customizing host and service layouts
	Understanding host groups
	Understanding container groups
	Customizing existing components
	Deploy directly on hosts
	Omit a service or component from the deployment
	Deploy existing components on dedicated hosts

	app-d_editsKH
	Appendix D: Security
	Encrypted communication
	Host security hardening
	Isolation
	Least privilege
	Securing network access to OpenStack services

	app-e_editsKH
	Appendix E: Container networking
	Bonded network interfaces
	Linux bridges
	Network diagrams

	app-f_editsKH
	Overriding OpenStack configuration defaults
	Overriding .conf files
	Overriding .json files
	Overriding YAML files
	Currently available overrides

	Security hardening
	Securing services with SSL certificates
	Self-signed certificates
	Setting subject data for self-signed certificates
	Generating and regenerating self-signed certificates

	User-provided certificates

	Affinity
	Advanced service configuration
	Infrastructure service roles
	OpenStack service roles
	Other roles

	app-g_editsKH
	Appendix G: Additional resources

