
Installing OpenSRF 2.2.0
From MnPALS Staff Wiki
Installing OpenSRF 2.2.0

Contents

1 Referenced accounts
1.1 Switching between accounts

2 Install prerequisites
3 Install OpenSRF
4 Create the opensrf user
5 Define OpenSRF domains
6 Adjust the system dynamic library path
7 Configure ejabberd
8 Create ejabberd users
9 Update the OpenSRF configuration files

9.1 opensrf.xml
9.2 opensrf_core.xml
9.3 ~/.srfsh.xml

10 Starting and stopping OpenSRF services
11 Testing the default OpenSRF services

Referenced accounts

The OpenSRF installation instructions refer to several accounts which are required to properly install
and run OpenSRF:

user: the regular user account you use to log onto the Linux system.
root: the system administrator/superuser account.
opensrf: a special user account which you will create during the installation process.

Please make sure to issue commands using accounts specified in the instructions.

Switching between accounts

To switch to the root account, issue su - on most systems or sudo su - on Ubuntu and enter the
root password when prompted.
To switch to the opensrf account, issue su - opensrf or sudo su - opensrf on Ubuntu.
To switch back to the original account, issue the exit command.

Installing OpenSRF 2.2.0 - MnPALS Staff Wiki

1 of 7 2014-10-16, 10:39

Install prerequisites

Several prerequisite packages must be installed prior to configuring and installing OpenSRF. To make
this process easier, OpenSRF source package includes a prerequisite installer file, called
Makefile.install.

As user, download and uncompress the OpenSRF source package:

wget http://evergreen-ils.org/downloads/opensrf-2.2.0.tar.gz
tar xzf opensrf-2.2.0.tar.gz

Uncompressing will create a new directory titled opensrf-2.2.0. These instructions will refer to this
directory as the OpenSRF source directory.

Change directory to the OpenSRF source directory:

cd opensrf-2.2.0/

As root, issue one of the following commands in the OpenSRF source directory. For this version of
OpenSRF, the prerequisite installer was verified to work with the following distributions.

Ubuntu 12.04:

sudo make -f src/extras/Makefile.install ubuntu-precise

When the prerequisite installer reaches the Perl module stage, you may be prompted for configuration of
Comprehensive Perl Archive Network (CPAN) on your server. You can generally accept the defaults by
pressing <return> for all of the prompts, except for the country configuration.

It is a good idea to read the output and to check for obvious errors. You could also save the output for
future reference, in case you need it for troubleshooting later.

Install OpenSRF

As user in the OpenSRF source directory, issue the following commands to configure and build
OpenSRF. By default, OpenSRF includes C, Perl, and JavaScript support. You can add the --enable-
python option to the configure command to build Python support and --enable-java for Java support.

./configure --prefix=/openils --sysconfdir=/openils/conf

You may want to save the configuration output from the previous command for future reference.

Installing OpenSRF 2.2.0 - MnPALS Staff Wiki

2 of 7 2014-10-16, 10:39

make

As root in the OpenSRF source directory, issue the following command to install OpenSRF:

sudo make install

Create the opensrf user

The opensrf user is required to run all OpenSRF processes and must own all files contained in the
/openils/ directory.

As root, issue the following commands to create and configure the environment for the opensrf user.

useradd -m -s /bin/bash opensrf
echo "export PATH=\$PATH:/openils/bin" >> /home/opensrf/.bashrc
passwd opensrf
chown -R opensrf:opensrf /openils

Define OpenSRF domains

For security purposes, OpenSRF uses Jabber domains to separate services into public and private realms.
Throughout these instructions, we will use the example domains public.localhost and
private.localhost.

On a single-server system, the easiest way to define public and private domains is to define separate
hostnames by adding entries to the /etc/hosts file. Here are entries that you could add to a stock
/etc/hosts file for our example domains:

127.0.1.2 public.localhost public
127.0.1.3 private.localhost private

Adjust the system dynamic library path

As root, run the following commands to adjust the system dynamic library path:

echo /openils/lib > /etc/ld.so.conf.d/opensrf.conf
ldconfig

Note that some systems may require the /openils/lib entry to be placed directly in /etc/ld.so.conf.

Configure ejabberd

Installing OpenSRF 2.2.0 - MnPALS Staff Wiki

3 of 7 2014-10-16, 10:39

Ejabberd is the XMPP (Jabber) server of choice for the OpenSRF project. In most cases, you only have
to make a few changes to the default ejabberd.cfg file to make ejabberd work for OpenSRF.

As root, stop ejabberd before making any changes to its configuration.

sudo /etc/init.d/ejabberd stop

As root, open /etc/ejabberd/ejabberd.cfg and make the following changes.

Define your public and private domains in the hosts directive. For example:

%% Hostname
{hosts, ["localhost", "private.localhost", "public.localhost"]}.

Comment out the mod_offline directive:

%%{mod_offline, [{access_max_user_messages, max_user_offline_messages}]},

Increase the max_user_sessions value to 10000:

%% Define the maximum number of time a single user is allowed to connect:
{access, max_user_sessions, [{10000, all}]}.

Change all max_stanza_size values to 2000000:

{max_stanza_size, 2000000},

Change all maxrate values to 500000:

%% The "normal" shaper limits traffic speed to 1.000 B/s
{shaper, normal, {maxrate, 500000}}.

%% The "fast" shaper limits traffic speed to 50.000 B/s
{shaper, fast, {maxrate, 500000}}.

Enable symmetric multiprocessing (experimental). As root, open /etc/default/ejabberd and make
the following change:

XMP=auto

As root, restart the ejabberd server to make the changes take effect:

Installing OpenSRF 2.2.0 - MnPALS Staff Wiki

4 of 7 2014-10-16, 10:39

sudo /etc/init.d/ejabberd start

Create ejabberd users

For each domain, you need two ejabberd users to manage the OpenSRF communications:

an ejabberd router user, to whom all requests to connect to an OpenSRF service will be routed;
this ejabberd user must be named router.
an ejabberd opensrf user, which clients use to connect to OpenSRF services; this user can be
named anything you like.

As root, create the ejabberd users. Substitute PASSWORD for your chosen passwords for each user
respectively:

sudo ejabberdctl register router private.localhost PASSWORD
sudo ejabberdctl register router public.localhost PASSWORD

sudo ejabberdctl register opensrf private.localhost PASSWORD
sudo ejabberdctl register opensrf public.localhost PASSWORD

Update the OpenSRF configuration files

There are several configuration files required to make OpenSRF work. Examples of these files are
installed along with OpenSRF.

As opensrf, copy the example files to create your locally customizable versions:

cd /openils/conf/
cp opensrf_core.xml.example opensrf_core.xml
cp opensrf.xml.example opensrf.xml
cp srfsh.xml.example ~/.srfsh.xml

You may choose to keep the original example files for future reference.

opensrf.xml

/openils/conf/opensrf.xml lists the services that this OpenSRF installation supports. If you create a
new OpenSRF service, you need to add it to this file. The <hosts> element at the bottom of the file lists
the services that should be started for each hostname. You can force the system to use localhost, so in
most cases you will leave this section as-is.

opensrf_core.xml

/openils/conf/opensrf_core.xml lists the ejabberd connection information that will be used for the

Installing OpenSRF 2.2.0 - MnPALS Staff Wiki

5 of 7 2014-10-16, 10:39

system. The file also defines logging verbosity and which services will be exposed on the HTTP
gateway.

At the very least, you will need to add ejabberd user credentials to this file.

As opensrf, edit the following sections of /openils/conf/opensrf_core.xml:

<config>

 <opensrf>
 <domain>private.localhost</domain>
 <username>opensrf</username>
 <passwd>PASSWORD</passwd>
 </opensrf>

 <gateway>
 <domain>public.localhost</domain>
 <username>opensrf</username>
 <passwd>PASSWORD</passwd>
 </gateway>

 <routers>
 <router>
 <server>public.localhost</server>
 <username>router</username>
 <password>PASSWORD</password>
 </router>

 <router>
 <server>private.localhost</server>
 <username>router</username>
 <password>PASSWORD</password>
 </router>
 </routers>

</config>

Additionally, consider the impact of logging level settings on your system. Higher OpenSRF logging
verbosity tends to fill space rather quickly.

~/.srfsh.xml

~/.srfsh.xml enables a Linux user to use the srfsh interpreter to communicate with OpenSRF services.
You will need to add ejabberd user credentials to this file in order for srfsh to work.

<srfsh>
 <domain>private.localhost</domain>
 <username>opensrf</username>
 <passwd>PASSWORD</passwd>
</srfsh>

Starting and stopping OpenSRF services

Installing OpenSRF 2.2.0 - MnPALS Staff Wiki

6 of 7 2014-10-16, 10:39

To start all OpenSRF services with a hostname of localhost, issue the following command as the opensrf
Linux account:

osrf_ctl.sh -l -a start_all

To stop all OpenSRF services with a hostname of localhost, issue the following command as the opensrf
Linux account:

osrf_ctl.sh -l -a stop_all

Testing the default OpenSRF services

By default, OpenSRF ships with an opensrf.math service that performs basic calculations involving two
integers. Once you have started the OpenSRF services, test the services as follows:

As opensrf, start the srfsh interactive OpenSRF shell and issue the following request to test the
opensrf.math service:

srfsh
srfsh# request opensrf.math add 2,2

You should receive the value 4.

Installing OpenSRF 2.2.0 - MnPALS Staff Wiki

7 of 7 2014-10-16, 10:39

