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Abstract

There is a fundamental connection between crustal strain (deformation) rates and seismic activity. To this end two

FORTRAN utility programs have been developed, aimed at estimating the seismicity on a fault in cases when this cannot

be done directly, or as a comparison with observed data. The first program (‘‘moment_slip’’) is one in which seismicity is

derived from the rate of seismic slip, based on published models for the connection between slip rates and seismic activity.

The size of the fault is essential here, constraining the maximum magnitude. The slope of the frequency–magnitude

distribution and its functional form are other important controlling parameters. The key physical concept in this

connection is seismic moment release, which is related to magnitude through specified moment–magnitude relationships.

For cases when slip rates are not available a second program (‘‘moment_rate’’) has been developed, aimed at computing

the recurrence rate from an estimate of the moment release, inferred for example from historical and/or recent seismicity in

the region in which the fault is located. A number of sensitivity tests demonstrate the relative importance of the different

assumptions and parameters.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Seismic hazard estimations are essentially predic-
tions of which ground motions one should expect
from future earthquakes. Such assessments started
with deterministic methods, asking which kind of
earthquakes a given (building) site possibly could be
exposed to, where they could be located and with
which magnitude. This is essentially a scenario-based
approach. Probabilistic methods on the other hand
are essentially statistically based assessments (Cornell,
e front matter r 2007 Elsevier Ltd. All rights reserved
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1968; McGuire, 1976, 1978) in which a range of
seismic sources are considered, each with their own
occurrence probabilities and influence on the site:
dependent on the distance and frequency of motion.
The key product here is the so-called hazard curve
which usually provides expected ground motions
versus yearly probabilities (or return periods), which
can be provided with confidence intervals if a logic-
tree (or Monte Carlo) approach is applied (Kulkarni
et al., 1984; Coppersmith and Youngs, 1986; Bommer
et al., 2005).

Seismic hazard analysis methods have a wide
range of applications, from broadly based zonations
aimed essentially only at describing and delineating
the seismicity, to site-specific analyses aimed speci-
fically at design. Within both fields the analyses
.
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range from relatively cursory to highly detailed,
with the level of detail for design purposes being
dependent on the sensitivity of the installation. The
key predictive element in any seismic hazard
analysis, both probabilistic and deterministic, is
the source model which specifies the expected
spatio-temporal distribution of earthquakes within
the range of distances which could potentially
influence the site. For deterministic methods the
source model is usually a specific fault, while for
probabilistic methods it is often some combination
of area sources (of homogeneous seismicity) and
specific faults.

The dynamic processes behind earthquakes are
those that are expressed in terms of crustal
deformation or strain rates, which range from
about 10�6 yr�1 in the tectonically most active
regions and possibly as low as 10�13 yr�1 in more
stable continental interiors (Bungum et al., 2005;
Calais et al., 2006). These are average numbers,
however, and what matters the most in terms of
crustal deformation at a specific site is the slip rate
(often in units of mm/yr) on the potentially active
faults. Normally, the fault activity is estimated
directly by monitoring the seismicity over some
time, extrapolating this into the future from
statistical occurrence models in combination with
an independent assessment of maximum magnitude.
This is not always possible, however, especially if
the activity is low but still potentially important,
and it is for such cases that the algorithms in this
paper have been developed.

Various strategies may for such cases be chosen
for the assessment of earthquake activities on faults,
depending on which information is available for
characterizing the fault movement, the age of the
last movement (which is instrumental for calling the
fault ‘‘active’’ or not), the size of the fault, its
partitioning, etc. In cases where slip rates on faults
are available directly, algorithms based on such
estimates are considered to represent the most
viable alternative provided that the derived activity
is always assessed in terms of the equivalent
moment release.

When slip rates are not available the earthquake
activity on a fault has to be assessed by other means,
usually by assigning to the fault a certain propor-
tion of the seismic activity which is assessed for the
region containing the fault. In this case also it is
important to consider the moment rate budget,
rather than the number of events, or the magnitu-
de–frequency distribution. Since the contribution to
seismic moment increases strongly with magnitude,
the maximum magnitude becomes very critical in
this respect.

For the purpose of this study we have developed
two different utility programs which may be useful
for quantifying earthquake activity on faults in both
of the above cases, as documented in the following
sections. We include also sensitivity tests that help
to determine the relative importance of the various
parameters.

2. Fault activity from slip rates

In calculating seismic hazard, the seismicity which
is assigned to an individual fault is, as for the area
sources, usually assumed to follow the classical
cumulative Gutenberg–Richter relationship:

logN ¼ aþ bM, (1)

where N is the number of earthquakes equal to or
above magnitude M, and a and b are constants.
Here, a determines the absolute activity level while b

determines the slope of the curve (usually around
1:0), or the ratio between smaller and larger earth-
quakes. The distribution is limited at the upper end
by the maximum magnitude Mmax where a sharp
cutoff may be assumed, and at the lower end by a
lower bound or reference magnitude (usually around
magnitude 4–5) which is the starting point for the
seismic hazard integration. The lower cutoff is
essentially determined from engineering considera-
tions, separating between events that are of engineer-
ing importance or not. Formally, the cumulative
occurrence relationship in this case can be expressed
as (Chinnery and North, 1975):

NðMÞ ¼ 10ða1�bMÞHðMmax �MÞ, (2)

where Hð�Þ is the Heaviside step function. This form,
shown in Fig. 1, has been commonly used in
probabilistic seismic hazard analyses. The form of
truncation means that this model is particularly
enriched in large magnitude earthquakes.

Normally, b-values for area sources are, as
already noted, around 1:0, implying a factor of 10
reduction in the number of events per magnitude
unit. The b-value assigned to recurrence for faults is
often (but not necessarily) lower, however, reflecting
the narrower probability density function for
magnitudes relating to just one particular fault.

Physically, a reason for a lower b-value for faults
may be tied to the concept of ‘‘characteristic
earthquakes’’, which is supported theoretically as
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Fig. 1. Cumulative recurrence relationships for Models 1–3 (Anderson and Luco, 1983) and Model 4 (Youngs and Coppersmith, 1985)

used in this paper, based on a fault that allows for a maximum magnitude of 8.0 (fault length 120 km and a length/width ratio of 2), a slip/

length ratio of 10�5, a shear modulus of 30GPa, a slip rate of 1mm/yr and a b-value of 1.0.
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well as by observational data (Swan et al., 1980;
Papageorgiou and Aki, 1983), but also challenged
(Grant, 1996; Bakun et al., 2005). This concept
involves the assumption that most of the energy
released (or the slip) on a fault is accounted for
through earthquakes which are generally of about
the same magnitude. The low b-values that this
would imply are not necessarily in conflict with
larger values regionally (for area sources) where the
contribution from a variety of faults, large and
small, is accounted for.

The estimation of activity rates (N-values)
involves also the seismic moment, M0, the rigidity,
or shear modulus, m, the total average displacement
(or slip) across the fault, D, and the rupture area,
A ¼ LW , where L is fault length and W is fault
width. These parameters come directly into play in
the well-known physical definition of seismic mo-
ment for a particular earthquake (e.g., Aki et al.,
2002):

M0 ¼ mDA. (3)

Assuming conservatively that all of the fault slip
occurs seismically (i.e., a coupling coefficient of 1:0),
the total moment release rate (such as moment per
year) _M0

T
is related to the slip rate (annual

movement) of the fault as follows (Brune, 1968):

_M0
T
¼ mSA, (4)
where S is the annual slip (i.e., the slip rate),
ignoring possible aseismic creep (Anderson et al.,
1993). It is recognized that _M0

T
should be averaged

over several cycles of large earthquakes for this
relation to be valid (Anderson, 1979; see also
Molnar, 1979).

Based on Eqs. (2)–(4), Anderson and Luco (1983)
deduced the following relationship for the determi-
nation of the number of earthquakes N above the
lower bound magnitude (normally around 4–5) on a
fault:

N1ðMÞ ¼
d̄ � b̄

d̄

� �
S

b

� �
eb̄ðMmax�MÞ e�ððd̄=2ÞMmaxÞ, (5)

where b̄ ¼ bðlnð10ÞÞ, d̄ ¼ dðlnð10ÞÞ, b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaM0ð0ÞÞ=ðmW Þ

p
, a ¼ D=L, and M0ð0Þ is the

seismic moment for MS ¼ 0.
The parameter d is the magnitude scaling

coefficient in the well-known log-linear relation
between moment and magnitude, of the form
logM0 ¼ c� dM (e.g., Kanamori and Anderson,
1975).

Anderson and Luco (1983) also developed similar
relationships for two other recurrence models in
addition to Eq. (5), firstly the incremental relation

n2ðMÞ ¼ 10ða2�bMÞHðMmax �MÞ, (6)

as advocated by Båth (1978), Anderson (1979) and
Berril and Davis (1980). In its cumulative version,
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this occurrence relation has a more smooth
(rounded) transition towards NðMmaxÞ ¼ 0. This is
occurrence relation 2 in Anderson and Luco (1983),
or Model 2 in the present paper, tied to the
following relation for N:

N2ðMÞ ¼
d̄ � b̄

b̄

� �
S

b

� �
eb̄ðMmax�MÞ � 1
h i

e�ððd̄=2ÞMmaxÞ.

(7)

Occurrence relation 3 in Anderson and Luco (1983),
or Model 3 in the present paper, is one proposed by
Main and Burton (1981):

n3ðMÞ ¼ ð10
ða3�bMÞ � 10ða3�bMmaxÞÞHðMmax �MÞ,

(8)

which has an even gentler transition towards
NðMmaxÞ ¼ 0. The corresponding N-relation in this
case reads

N3ðMÞ ¼
d̄ðd̄ � b̄Þ

b̄

S

b

� �
1

b̄
eb̄ðMmax�MÞ � 1
h i�

�ðMmax �MÞ
�
e�ððd̄=2ÞMmaxÞ. ð9Þ

For all of these three Anderson and Luco (1983)
models (Eqs. (5), (7) and (9)), the annual number of
events N above a given magnitude M is the inverse
of the return time T in years, for the same
magnitude, i.e., T ¼ 1=N.

In addition to these three models, we have also
included in this paper a Model 4, as developed by
Youngs and Coppersmith (1985), and which is
supposed to be quite close to Model 2:

N4ðm
0Þ ¼

mAf Sðd � bÞ½1� e�bðm
u�m0Þ�

bMu
0 e
�bðmu�m0Þ

, (10)

where m0 is some arbitrary reference magnitude,
m ¼ b lnð10Þ, Af ¼ LW is fault area and mu is an
upper bound magnitude. Models 1–4 presented here
are derived from Equations I.10, II.9 and III.9 in
Anderson and Luco (1983) and from Equation 11 in
Youngs and Coppersmith (1985), respectively, and
the cumulative recurrence rates from the models are
also shown in Fig. 1. For more details about the
models and the assumptions they are derived from
we refer to these papers and to Anderson et al.
(1993).

The main purpose of the present paper is to apply
and test these four models, and to this end we have
developed a FORTRAN utility program ‘‘mo-
ment_slip’’ where all of the models are included,
and with a parameterization as shown in Table 1.
Line 3 in that table refers to the fact that the
program loops over a range of fault lengths,
essentially with individual runs for each fault length
(or fault size). The program could of course be run
only with just one fault length, but experience shows
that the scaling properties often are interesting here,
not least in relation to the magnitude potentials
(maximum magnitude). In addition, the fault length
is often a poorly constrained parameter, and in this
sense the program will demonstrate clearly what the
consequences of different interpretations will be.

For a long fault, and in particular a fault system,
some segmentation is usually needed when evaluat-
ing the potential seismicity, or the recurrence
characteristics. An earthquake segment refers nor-
mally to those parts of a fault zone that have
ruptured during individual earthquakes, where the
segments are separated by some kind of disconti-
nuity that may be either geology-based (geometric,
structural) or behavioural (slip rates, seismicity,
displacements, etc.) (Yeats et al., 1997). The length
of the segment is an important constraining para-
meter for the maximum magnitude.

In returning to Table 1 it should be noted here
that when a magnitude scale other than moment
magnitude MW is used, relations to MW are
established either through a user-defined moment–
magnitude relation (line 7) combined with the
Hanks and Kanamori (1979) M0–MW relation, or
through a standard (global) MW–MS relation when
MS is used (Okal and Romanowicz, 1993). Using
this utility program, a number of sensitivity tests
have been conducted and documented in the
following.

One of the models that are needed in these
calculations is the relation between magnitude and
fault area (line 8 in Table 1), where the numbers in
the table refer to the classical Wyss (1979) relation.
This relation is shown in Fig. 2 together with that of
Nuttli (1983), developed for intraplate conditions,
and those of Wells and Coppersmith (1994), for the
three different modes of faulting. Anderson et al.
(1996) have also developed a relation that is quite
close to that of Wells and Coppersmith (1994) but
which also includes slip rate, and where a higher slip
rate reduces the maximum magnitude. As for
relations between moment and magnitude those
connecting magnitude to fault area often vary
regionally, and in particular so between plate
margin and intraplate regions.

The differences between the four recurrence
models documented above are shown in Fig. 3,
together with the average and the standard devia-
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Table 1

Input parameters used in the computer program ‘‘moment_slip’’, with examples of possible values

Line Parameter Example values

1 Model type: 1–3: Anderson and Luco (1983); 4: Youngs and Coppersmith (1985); 5:

average of 1–4.

5

2 Fault slip rate (mm/yr) 1.0

3 Fault length range: min, max and step length (km) 5.0 45.0 2.5

4 b-value in logðNÞ ¼ a� b �M 1.0

5 Reference magnitude for N-value calculation 4.0

6 Magnitude type (1: MW , 2: MS , 3: user-defined) 1

7 Moment–magnitude relation: logðM0Þ ¼ cþ d �M c ¼ 16:05 d ¼ 1:5
8 Fault area to Mmax relation: logðAÞ ¼ aþ b �Mmax a ¼ �4:15 b ¼ 1:0
9 Fault slip to fault length ratio 10�4

10 Fault length to fault width factor ðL=W Þ 2.0

11 Shear modulus (GPa) 30

The program loops over a range of fault lengths, or essentially fault areas since the length/width ratio is also given, and for each of these it

computes the activity rates and corresponding return times, based on the other parameters specified in the table, for the model given in line

1. For model type 5 both the average (of the four base models) and the standard deviation are computed.

Fig. 2. Relation between fault area and moment magnitude using relations published by Wyss (1979), Nuttli (1983) and Wells and

Coppersmith (1994), the latter for strike-slip (SS), reverse (R) and normal (N) faulting events. Note that the Nuttli (1983) relation is for

intraplate conditions, explaining the difference in slope.

H. Bungum / Computers & Geosciences 33 (2007) 808–820812
tion. The difference between the models is, as
shown in Fig. 1 and also discussed by Anderson
and Luco (1983) and Youngs and Coppersmith
(1985), essentially the way in which the underlying
occurrence relation behaves close to the upper
bound magnitude. Model 1 is the most conservative
one in this sense, assuming an abrupt cutoff and
thereby allowing more moment release to occur
close to the maximum magnitude, resulting in a
higher activity rate. Even so, the scatter is only
about a factor of 2 in activity rate, which is not
more than what most experienced hazard analysts
would assume for any activity rate uncertainty, and
the differences between the models are small also
when compared with the magnitude sensitivity,
which is shown in Fig. 4. The sensitivity to fault
length is log-linear only for some of the models in
Fig. 3.
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Fig. 3. Relation between return period for magnitude 4 earthquakes on a fault and fault length, for the four activity rate models and their

average, with error bars for one standard deviation. The relations are based on a fault length twice the width, a slip rate of 1mm/yr, a b-

value of 1, a fault slip/length ratio of 10�4, a rigidity of 30GPa and a fault area versus maximum magnitude relation of

logðAÞ ¼ �4:15þMmax. The x-axis is drawn both for fault length and maximum magnitude. The return period on the y-axis is the inverse

of the activity rates, or the N-values. These parameters are used also in the subsequent figures.

Fig. 4. Relation between return period for magnitude (MW) 3, 4 and 5 earthquakes on a fault and fault length. Parameters otherwise are

as for Fig. 3 (the solid line in Fig. 3 is identical to the line for M ¼ 4 in Fig. 4).

H. Bungum / Computers & Geosciences 33 (2007) 808–820 813
The average of the four slip rate models is
introduced in Fig. 4, showing the return period for
threshold magnitude of 3, 4 and 5 as a function of
fault length, assuming that the length is twice the
width ðL ¼ 2W Þ, for a case when the slip rate is
1mm/yr. The return period here is simply the
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inverse of the annual number of events. The
earthquake frequency increases strongly (and the
return period decreases) with fault length, given a
constant slip rate. In these and the following
calculations we have assumed the b-value to be 1,
the magnitude fault area relation as in Table 1
(using Wyss, 1979), and the slip to fault length
ratio to be 10�4 (e.g., Scholz, 2002). The rigidity
(shear) modulus is here set to 30GPa, which is a
commonly used crustal average. For shallow fault-
ing, however, the rigidity may decrease significantly
(e.g., Bilek and Lay, 1999), leading to a proportion-
ally increased displacement for the same seismic
moment (Eq. (3)).

The sensitivity of the activity rate (again in terms
of return period) with respect to slip rate is analysed
in Fig. 5, where the parameters otherwise are
defined as in Fig. 3. The sensitivity to slip rate is
log-linear, which is easily seen also from Eqs. (5), (7)
and (9). Please note that the return period (activity
rate) scale in Fig. 5 covers five orders of magnitude,
showing a strong sensitivity both to fault length and
slip rate.

The ratio between fault slip and fault length, or
the strain drop, is another important parameter
where the sensitivity is shown in Fig. 6, in this case
for fault lengths of 10 and 50 km. The two curves
represent fixed values of fault length and thereby
also Mmax, and since the slip rate and seismic
moment rate also are constant the change in
Fig. 5. Relation between return period for M ¼ 4 earthquakes on a fa

otherwise are as for Fig. 3.
earthquake frequency (or return period) is therefore
related directly to the change in stress drop, being
proportional to the strain drop. The range used
there for this ratio covers the commonly reported
range for this parameter, even though 10�3 may be
on the high side. It could be noted here that
intraplate conditions may imply higher strain drops
and thereby also more moment release (see Eq. (3)),
which is consistent with the difference in slope for
the Nuttli (1983) relation in Fig. 2. Please note that
the relations in Fig. 6 are not linear in log–log space.

The final sensitivity test from the ‘‘moment_slip’’
program is shown in Fig. 7, in this case with respect
to the rigidity (shear) modulus. Eq. (3) shows that
the rigidity also scales linearly with seismic moment,
and for faulting other than in crystalline bedrock it
may be unconservative to use the crustal average of
30GPa (equivalent to 3� 1011 dyn=cm2) for this
parameter. As is well known, the shear modulus,
being the product of the density and the square of
the shear velocity, may easily drop a factor of 10
even in fairly well-consolidated sediments, as
compared with crystalline rocks. For a given seismic
moment (or magnitude), Eq. (3) shows in this
respect that a factor of 10 in reduced rigidity means
a 10 times larger fault displacement. What is seen in
Fig. 7 in this respect is that, as the rigidity increases,
more moment will be released over a similar fault
area, thereby reducing the return time between
earthquakes of a given magnitude.
ult and slip rate, for fault lengths of 5, 20 and 75 km. Parameters
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Fig. 6. Relation between return period for M ¼ 4 earthquakes on a fault and the ratio between slip and fault length, for fault lengths of 10

and 50 km. Parameters otherwise are as for Fig. 3.

Fig. 7. Relation between return period for magnitude 4 earthquakes on a fault and the shear modulus, for fault lengths of 10 and 50 km.

Parameters otherwise are as for Fig. 3.
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3. Fault activity from seismic moment budgeting

In cases when direct slip rate estimates are not
available, which is common even in plate margin
regions, there might be other kinds of structural
geological information available, supplemented by
geodetic (such as GPS) observations, which could
be used to infer, or at least to constrain, the slip
rates and the associated geohazard potentials (e.g.,
Ward, 1994). If such approaches are not feasible one
normally has to estimate, or at least to constrain,
the seismic activity on the mapped faults from the
regional seismicity, as deduced from historical and
recent seismicity. This can be done, for example, by
assigning a certain part (percentage) of the regional
seismicity to the mapped faults, keeping the
remaining for the area source(s) that receive their
contributions from largely unmapped faults. This
percentage can be applied directly to the N-values if
the b-values are the same for area and fault sources,
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Table 2

Input parameters used in the computer program ‘‘moment_rate’’, with examples of possible values

Line Parameter Example values

1 Reference magnitude for N-value calculation 4.0

2 Area zone N, b and Mmax 1.0 1.0 7.0

3 Fault zone M0-fraction, b-value and Mmax 0.5 1.0 7.0

4 Moment–magnitude relation: logðM0Þ ¼ cþ d �M c ¼ 16:05 d ¼ 1:50
5 Fault length (km), length/width factor 15.0 2.0

6 Fault area to Mmax relation: logðAÞ ¼ aþ b �Mmax a ¼ �4:15 b ¼ 1:0
7 a-value step length; moment ratio convergence limit 0.01 0.001

8 Maximum number of iterations; level of output details (0–2) 1000 2

A fraction of 0.50 in line 3 means that 50% of the regional (area zone) seismicity is assumed to occur on the mapped fault for which

activity rates will be estimated in this program. The algorithm works iteratively to determine the a-value that would produce a given

moment rate, given a b-value.

Fig. 8. Relation between N- and b-values on a fault, given the assumption that the fault always should capture all of the seismic moment

that is released in the surrounding area zone, and with a maximum magnitude of 7. Parameters otherwise are as for Fig. 3.
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but if the b-values are different the percentage has to
be applied to the moment release, inferring a- or N-
values indirectly. For this purpose another utility
program (‘‘moment_rate’’) has been developed, with
a parameterization as seen in Table 2.

Essentially, this means that the fault is assumed to
exhibit a certain moment rate, assessed in one way
or the other, and based on a predefined b-value. The
computer program then determines the a-value that
would produce that moment rate, for a given
functional form of the recurrence relation. The
program works iteratively, based on integrating the
seismic moment over the entire significant magni-
tude range.

Examples of how this computer program can be
used are shown in the following. In Fig. 8 it is
assumed that the area containing the fault has
N ¼ 1 events per year (above magnitude 4) and
a b-value of 1:0, that all of the seismicity goes
to the fault, and that the maximum magnitude for
both the area and the fault is 7:0. The figure
shows then the obvious result that the fault N-value
will be 1:0 if the fault b-value is 1:0 as for the
area, while for a b-value of 0:6 (which may not
be an unrealistic value for faults) the correspond-
ing N-value is almost down to 0:1. The obvious
reason for this reduced a-value is that this is
needed in order to keep the moment rate constant
as the b-value decreases, thereby picking up more
moment release near the maximum magnitude, in
order to compensate for the reduction at lower
magnitudes.
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Fig. 9. Relation between N-values and maximum magnitude on a fault, given the assumption that the fault always should capture all of

the seismic moment that is released in the surrounding area zone, and with a maximum magnitude of 7. Parameters otherwise are as for

Fig. 3.
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In the next example in Fig. 9 the fault N-value is
shown as a function of maximum magnitude, the
parameters otherwise being as for Fig. 8. When
there is no difference in maximum magnitude
ðMmax ¼ 7:0Þ the N-value is of course 1:0, but as
Mmax decreases towards 5:0 the same moment rate
release on the fault can be maintained only by
increasing strongly the seismicity rate in terms of the
N-value. This strong dependency on maximum
magnitude results from the fact that most of the
seismic moment comes from the highest magni-
tudes, even if the number of events there is lower. In
principle this is well known, but it may be surprising
to see how strong this effect is. This means that the
moment release may be more sensitive to maximum
magnitude than to the N-values, which for low
exceedance probabilities may be important also in a
seismic hazard context.

The ruling principle in all of this is that it is the
seismic moment (or energy) budget which is the
most important measure for expressing level of
seismicity. Since many earthquake catalogues now
use moment magnitude, this becomes easier to
handle in a balanced way.

4. Selection of model parameters

The models presented above require the various
parameters involved be determined in order for the
activity rate represented by the N-value to be
estimated (Anderson et al., 1993). These parameters
are normally determined empirically, often depen-
dent on the regional and local tectonic regimes. It is
generally possible to estimate such parameters with
less uncertainty in regions where deformation and
seismicity rates are high, than in more stable regions
such as most intraplate areas. Even there, however,
maximum magnitudes may be high, they are just
less frequent (Johnston and Kanter, 1990; Bungum
et al., 2005). Plate margin areas certainly also pose
major problems for the earthquake hazard analyst,
basically in terms of epistemic uncertainties with
respect to the seismic potentials, even of the more
well-mapped faults. Naturally, the basic underlying
problem is that any seismic hazard analysis is an
exercise in predicting the future.

Some of the most important of these parameters
are discussed briefly below, with emphasis on both
plate margin and intraplate conditions, either in
terms of commonly recommended values or as a
range of possible values.

4.1. Moment– magnitude relationship

Numerous moment–magnitude relations are
available for different regions and tectonic regimes,
and for different types of magnitudes. Such regional
relations may be used in cases when global relations
(such as Okal and Romanowicz, 1993) or other
regional relations (such as Ambraseys and Free,
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1997, for Europe; see also Bungum et al., 2003)
cannot be used. Such relations should be chosen
with care, however, since the area-specific ones
usually are based on poorer data, and therefore less
reliable than the global ones. The main problem
here is often that the larger magnitudes are missing,
especially for intraplate regions, and it is recom-
mended therefore to constrain such relations in the
high-magnitude end by more stable global relations.
Generally, however, the relation used should be
applicable to the magnitudes that are used in the
seismicity catalogues that the analysis is based on.
4.2. Fault slip to length ratio

This ratio is a proportionality constant between
mean slip and fault length, where again plate
margins are considerably better covered than
intraplate areas. For such areas a value of 1:25�
10�5 has earlier been suggested as a reasonable
number, albeit conservative (Scholz, 1982). More
recent results (Scholz et al., 1986; Scholz, 2002) have
given support for values in the range 6–10� 10�5.
Even more recently, however, results from the
major postglacial faults in northern Fennoscandia
have indicated values in excess of 10�4 (Muir Wood,
1993; Bungum et al., 2005), which clearly has
significant implications for the near-field effects of
large intraplate earthquakes.
4.3. Fault width to length ratio

The proportionality constant between the width
W and the length L of the fault is another parameter
that comes with large uncertainties, with large
regional (tectonic) variations and a significant
dependence on magnitude. The form of the rup-
tured area is often taken as being quadratic or
rectangular, depending largely on earthquake size.
A rectangular form, setting the width W equal to 2

3

of the fault length L, may be a reasonable choice for
larger intraplate events. For plate margin areas,
however, the sensitivity to magnitude becomes more
critical since larger earthquakes (say above
M ¼ 6:7) that reach the depth of the seismogenic
(brittle) zone can grow only in the horizontal
direction (Scholz, 2002). This is in turn related to
the long discussion of whether slip scales with the
length or the width of the fault (e.g., Scholz, 1994;
Romanowicz, 1994; Wang and Ou, 1998).
4.4. Maximum magnitude

The maximum magnitude possible on a certain
fault is also very difficult to assess, especially in
regions of moderate and low seismicity where
observational data from large magnitude earth-
quakes are scarce. In Fig. 2 we have shown a
number of such relations, including a global relation
by Wyss (1979) and an intraplate one by Nuttli
(1983), the latter showing a very different slope.
More recently, Wells and Coppersmith (1994) have
provided a detailed analysis of empirical correla-
tions between magnitude and fault dimensions,
surface and subsurface, for different modes of
faulting (see Fig. 2). As expected, these regressions
show a considerable scatter around the mean. The
way in which such relations change with magnitude
also needs to be explored further.

In plate margin areas the maximum magnitude
can in general be inferred from the length of the
fault or a fault segment that is assumed to be able to
rupture in one earthquake. This approach is,
however, very uncertain, as demonstrated recently
by the 1992 Landers (California) and the 1999
Denali (Alaska) earthquakes, both of which jumped
between faults that were previously assumed to be
unconnected. In spite of efforts to develop more
sophisticated approaches for assessing maximum
magnitude (Johnston, 1994), a useful practical rule
is, like for activity rates, to base the assessment in
part on the historical seismicity. A well-known rule-
of-thumb here is to use a value for Mmax 0:5
magnitude units above the largest one observed.
4.5. Rigidity modulus

The rigidity modulus is as already noted often set
to a crustal average, in the lack of more detailed
knowledge. For more shallow crustal conditions,
however, and in particular for sedimentary rocks,
the value may be significantly reduced, and with
strong effects as already noted. In a study of
subduction zone events, Bilek and Lay (1999) report
values in the range between 1GPa for near-surface
conditions to more than 100GPa at greater depths.
The range of rigidity values for intraplate crystalline
conditions will of course be much less than this,
even though depth is important also here. This
strong vertical variation in rigidity was the reason
why Heaton and Heaton (1989) suggested the use of
the potency ðM0=mÞ as a more stable size-scaling
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quantity, as also discussed by Anderson et al.
(1993).

5. Concluding remarks

The computer programs documented in this
paper require that the user specifies a range of
models and model parameters that will influence the
results, notably recurrence model (its functional
form), slip rate, slip to length ratio, fault length and
width, b-value, magnitude type, maximum magni-
tude (or fault area to maximum magnitude rela-
tion), moment–magnitude relation and shear
modulus. It could have been useful to specify
uncertainty ranges for all of these parameters in
order to propagate these uncertainties to the top.
When we have chosen not to do this, however, it has
first of all been because this could easily be
misleading as a way to model the overall uncertain-
ties, since these also include, in fact are likely to be
driven by, model uncertainties, in particular those
relating to the basic recurrence relations. A recog-
nized problem in this respect is the inadequacy of a
short observational period as a basis for long-term
estimates, as pointed out recently by Ambraseys
(2006), who found that large earthquakes in many
cases are less frequent when estimated from long-
term data sets rather than from the instrumental
period.

It is important to recognize these basic knowl-
edge-based uncertainties that relate to inadequately
understood geodynamic processes, in addition to
the parametric uncertainties that may be improved
with more and better data. In this sense it will be
easy for a user of the present computer programs to
replace the models and the relations, in order to
accommodate for particular regional and data-
specific requirements. The sensitivity tests that are
an essential part of this paper besides presenting the
models, are important since they will give the user
an impression of the influence of each of the
parameters, and also because some of the results
are not necessarily intuitive. For example, in Figs. 3
and 4 the return period is seen to decrease with
increasing fault length, which is because they all
have the same slip rate and that a smaller maximum
magnitude therefore will be compensated by a
higher occurrence rate at lower magnitudes. We
believe that such sensitivity tests are more useful to
the user than what could be inferred from a specific
test case taken from a model with only one specific
fault length.
The two computer programs are small and simple
utility programs of potential value first of all for the
practising seismic hazard analyst. Earlier versions of
the programs have been used by the author and his
collaborators over many years, demonstrating the
practical value. The programs are useful also as a
tool for a detailed seismic moment budgeting when
defining a source model for a seismic hazard study,
where it is recommended to add the moment release
from all of the sources (area zones and faults) in
order to compare this not only with the regional
historical seismicity but also with possible indepen-
dent constraints, in particular geologic and geodetic
information. Paleoseismological and other sources
of long-term seismicity variations (e.g., Ambraseys,
2006) are important in this respect.
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