
Guide to the MidoNet Plugin for Fuel 6.1
This document will guide you through the steps of install, configure and use the MidoNet plugin for Fuel.

Sections

MidoNet Plugin for Fuel 6.1
MidoNet is an Apache licensed production grade network virtualization software for
Infrastructure-as-a-Service (IaaS) clouds. This plugin provides the puppet manifests to install all the
components to deploy easily MidoNet with Fuel in a production environment.

MidoNet version that will be deployed is v2015.06 and this plugin currently is only compatible with version
6.1 of Mirantis OpenStack Fuel.

There are no prerequisites to use the MidoNet plugin: MidoNet is Open Source, and the plugin sets the
repositories from where download and install MidoNet packages.

Requirements

Requirement Version/Comment

Fuel 6.1

MidoNet plugin for Fuel 2.0.0

Limitations

• The plugin is only compatible with OpenStack environments deployed with Neutron + GRE as
network configuration in the environment configuration options. However, VXLAN can be configured
on the plugin settings after the environment creation.

• The plugin currently only works with CentOS 6.5 environments. In near future, it should work for
Ubuntu environments as well.

Installation Guide

Enable Experimental Features

1. To be able to install MidoNet, you should enable Experimental Features. To do so, manually modify
the /etc/fuel/version.yaml file in Fuel Master host to add experimental to the
feature_groups list in the VERSION section, just below mirantis item:

VERSION:
...
feature_groups:
 - mirantis
 - experimental

2. Restart the Nailgun container with dependencies by running:

$ dockerctl restart nailgun
$ dockerctl restart nginx
$ dockerctl shell cobbler

https://github.com/midonet/midonet/tree/stable/v2015.06.2
https://docs.mirantis.com/openstack/fuel/fuel-6.1/operations.html#enable-experimental-features

$ cobbler sync
$ exit

Install the Plugin
To install the MidoNet Fuel plugin:

1. Download it from the Fuel Plugins Catalog

2. Copy the rpm file to the Fuel Master node:

[root@home ~]# scp midonet-1.0-2.0.0-1.noarch.rpm root@fuel-master:/tmp

3. Log into Fuel Master node and install the plugin using the Fuel CLI:

[root@fuel-master ~]# fuel plugins --install midonet-1.0-2.0.0-1.noarch.rpm

4. Verify that the plugin is installed correctly:

[root@fuel-master ~]# fuel plugins
id	name	version	package_version
9 | midonet | 2.0.0 | 2.0.0

Create the MidoNet roles
MidoNet needs two roles besides the ones provided with Fuel:

• the NSDB role, which will install the Network State DataBase services (ZooKeeper and Cassandra).

• the Gateway role, that will provide the HA Gateway machine for inbound and outbound traffic of the
OpenStack deployment. (See MidoNet Fuel Plugin User Guide for more info about networking in
MidoNet)

NSDB role

1. Create a YAML file with the NSDB role definition, like this:

name: nsdb
meta:
 name: Network State Database for Midonet
 description: MidoNet Synchronization Services
volumes_roles_mapping:
 - allocate_size: min
 id: os

2. Name it, for instance, nsdb.yaml. Push the role for both environments (Ubuntu 2014.2.2-6.1
and Centos 2014.2.2-6.1) using the Fuel CLI:

$ fuel role --create --rel 1 --file nsdb.yaml
$ fuel role --create --rel 2 --file nsdb.yaml

Gateway role

https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/
https://docs.mirantis.com/openstack/fuel/fuel-6.1/user-guide.html#using-fuel-cli
https://docs.mirantis.com/openstack/fuel/fuel-6.1/user-guide.html#using-fuel-cli

1. Create the role for MidoNet Gateway by creating a file called gateway.yaml with the following
contents:

 name: midonet-gw
 meta:
 name: MidoNet HA Gateway
 description: MidoNet Gateway
 volumes_roles_mapping:
- allocate_size: min
 id: os

2. Create the role for both environments (Ubuntu 2014.2.2-6.1 and Centos 2014.2.2-6.1) using the Fuel
CLI

$ fuel role --create --rel 1 --file gateway.yaml
$ fuel role --create --rel 2 --file gateway.yaml

Edit the Fuel deployment graph dependency cycle
Now, you'll need to create a group inside Fuel's Deployment Graph to put the tasks related to the recently
created roles on the Fuel Deployment Graph.

1. Create a group type for Fuel 6.1 in a YAML file called /tmp/midonet_groups.yaml with the
following content:

- id: nsdb
 parameters:
 strategy:
 type: parallel
 requires:
 - deploy_start
 required_for:
 - deploy_end
 role:
 - nsdb
 type: group
 tasks:
 - logging
 - hiera
 - globals
 - netconfig
- id: midonet-gw
 parameters:
 strategy:
 type: parallel
 required_for:
 - deploy_end
 requires:
 - deploy_start
 role:
 - midonet-gw
 tasks:
 - logging
 - hiera
 - globals

https://docs.mirantis.com/openstack/fuel/fuel-6.1/user-guide.html#using-fuel-cli
https://docs.mirantis.com/openstack/fuel/fuel-6.1/user-guide.html#using-fuel-cli
https://docs.fuel-infra.org/fuel-dev/develop/modular-architecture.html#granular-deployment-process

 - netconfig
 type: group

2. Download the deployment tasks for the release 1:

fuel rel --rel 1 --deployment-tasks --download

3. A file ./release_1/deployment_tasks.yaml will be downloaded.

4. Without moving from your current directory, append the /tmp/midonet_groups.yaml file into the
deployment_tasks.yaml:

cat /tmp/midonet_groups.yaml >> ./release_1/deployment_tasks.yaml

5. Upload the edited deployment-tasks file to the release 1:

fuel rel --rel 1 --deployment-tasks --upload

6. Do the same for release 2:

fuel rel --rel 2 --deployment-tasks --download
cat /tmp/midonet_groups.yaml >> ./release_2/deployment_tasks.yaml
fuel rel --rel 2 --deployment-tasks --upload

7. Though current Fuel Plugins Framework only allows to apply tasks on pre_deployment and
post_deployment stages for 6.1 Fuel release, adding these groups and these tasks into the main
graph will allow NSDB and Gateway associated tasks to:

• Configure logging to see Puppet and MCollective logs related to the tasks from the Fuel Web
UI.

• Access to hiera variables.

• Access to global variables.

• Configure the IP addresses for each Fuel network type.

MidoNet Fuel Plugin User Guide
Once the Fuel MidoNet plugin has been installed (following Installation Guide), you can create OpenStack
environments that use MidoNet SDN controller as a Neutron Backend.

MidoNet Networks
MidoNet changes the behaviour of Neutron deployments and understanding what MidoNet plugin does
(especially on Public Network Ranges) - this concept is essential to configure the plugin properly.

MidoNet plugin is compatible with Neutron + GRE environment, so let's focus on the deployment with
ML2 first, to introduce the differences that MidoNet plugin has.

Without MidoNet plugin
Fuel 6.1 reference architecture has a schema with the networks that deploys.

ML2 networks:

https://docs.mirantis.com/openstack/fuel/fuel-6.1/reference-architecture.html#network-architecture
https://docs.mirantis.com/openstack/fuel/fuel-6.1/reference-architecture.html#neutron-with-gre-segmentation-and-ovs

In this schema, red network represents the Public + Floating IP range. That means API access to services
and Virtual Machines' Floating IPs share the same L2/L3 network. This schema overloads the Controllers'
traffic, since Neutron L3 service is running on the controller, answers ARP requests coming from inbound
traffic that belong to Virtual Machines' Floating IPs, NATs the Floating IP to the private IP address of the
Virtual Machine and puts the packet in the overlay of the green network (br-tun).

Even in an HA deployment, the L3 agent only runs in one of the Controller, and only gets spawned in
another host if the previous one loses connectivity (log into a controller and see how Pacemaker is
configured).

So Controller has to:

• Serve the API requests coming from users

• Run the data and messaging services (rabbitmq and mysql is running on the controllers as well)

• Handle all the N/S traffic that comes to and from the Virtual Machines.

With MidoNet plugin, separate the control traffic from the data one is easier.

With MidoNet plugin
In MidoNet, even the Floating IPs live in the overlay. Floating Range is separated from the services API
network range (called Public Network on Fuel and represented by the red network below) and MidoNet
gateway advertises the routes that belong to Floating Ranges to BGP peers. So MidoNet plugin forces
you to define a new Network on its settings, and allocation-range from environment settings get
overridden.

MidoNet deployment schema:

On this schema:

• Public API network is the red one. Only Controllers and Gateway need to access to it. It should be
a BGP router listening on the network to learn the Floating Range of the Virtual Machines.

• Private network is the green one. All the traffic between virtual machines is tunneled by MidoNet
over this network. Even Floating IP addresses.

• Management network is the blue one. All the nodes need to be connected to it, this network is used
by NSDB nodes to get information about Virtual Network infrastructure and Virtual Machines' network
flows.

• PXE/Admin network is the grey one. Needed by Fuel master to orchestrate the deployment.

• Storage network is not represented, since MidoNet nodes are not involved on it.

MidoNet gateway is pure-distributed and you can put as many gateways as you want, so you don't
overload machines in N/S traffic. Once BGP sessions are established and routes are exchanged (gateway
has a quagga instance running on it), N/S traffic comes routed from the Public API network to one of the
MidoNet Gateways. It does not matter which of them gets the packet, they work as if it were a single
machine. MidoNet Gateway sends the inbound packet directly to the host that has the Virtual Machine that
has to receive the traffic.

Controller nodes get less overloaded, since they only need to answer user requests and they almost don't
handle VM traffic (only the metadata requests at VM creation).

Now we are ready to create a Fuel environment that uses MidoNet.

Select Environment

1. When creating the environment in the Fuel UI wizard, choose Neutron with GRE on the Network tab.

2. MidoNet plugin does not interact with the rest of the options, so choose whatever your deployment
demands on them. Follow instructions from the official Mirantis OpenStack documentation to finish
the configuration.

3. Once the environment is created, open the Settings tab of the Fuel Web UI.

Configure MidoNet Plugin

1. Configuring the MidoNet plugin for Fuel, you will override most of the options of the Public Network
section of the Settings tab of the environment:

Fuel will still reserve IP addresses of the IP range (first row) to assign API-accessible IPs to the
OpenStack services, but the rest will be overridden by the plugin options that you are about to
configure, making the Floating Network full-overlay and pure floating.

https://docs.mirantis.com/openstack/fuel/fuel-6.1/user-guide.html#create-a-new-openstack-environment

2. Activate the option Assign public networks to all nodes. By default, Fuel only gives public access
to Controllers. We need to enable this option in order to have external connectivity to Gateway
Nodes.

3. Select the plugin checkbox and fill the options:

Let's explain them:

• Tunnel Type: Even you have chosen GRE tunnels on environment creation, this is a
convention because the deployment that Fuel does by default is the closest to the MidoNet
plugin one. Here you can choose between GRE or VXLAN as tunneling technology.

• Public Network CIDR: This option will be the CIDR of Neutron's External Network. This range
MUST NOT be the same as the Public Network section of the Settings tab of the environment.
There is no way to control this from the plugin development, so this restriction is all up to you!

• Public Gateway IP: The IP address of the Public Network CIDR. It will be the Gateway IP
address of the MidoNet Virtual network. This IP address can not be in the next section's range. .
Recommendation: put the first IP address of the CIDR. There is no way to control that this IP
belongs to the CIDR in from the plugin development, so be aware on the value you are setting.

• Floating Range Start and Floating Range End: First and last IP address of the Floating range
of IPs available to be used on Virtual Machines.

• Local AS Your Autonomous System number to establish a BGP connection.

• BGP Peer X AS and BGP X IP Address: Information needed to establish a BGP connection to
remote peers.

Assign Roles to Nodes

1. Go to the Nodes tab and you will see the Network State DataBase and MidoNet HA Gateway roles
available to be assigned to roles.

2. Just follow one rule:

• DO NOT assign the role Gateway and the role Controller altogether.

• NSDB role can be combined with any other role.

Finish environment configuration

1. Run network verification check

2. Press Deploy button to once you are done with environment configuration.

Licenses

Third Party Components Used in MidoNet OSS

Name Project Web Site License

akka https://typesafe.com/community/cor
e-projects/akka

Apache 2.0

Apache
Cassandra

http://cassandra.apache.org Apache 2.0

Apache
Commons

http://commons.apache.org/ Apache 2.0

Apache
Server

http://httpd.apache.org Apache 2.0

https://docs.mirantis.com/openstack/fuel/fuel-6.1/user-guide.html#verify-networks
https://docs.mirantis.com/openstack/fuel/fuel-6.1/user-guide.html#deploy-changes
https://typesafe.com/community/core-projects/akka
https://typesafe.com/community/core-projects/akka
http://cassandra.apache.org
http://commons.apache.org/
http://httpd.apache.org

Apache
Tomcat

http://tomcat.apache.org Apache 2.0

Apache
Zookeeper

http://zookeeper.apache.org Apache 2.0

AspectJ http://projects.eclipse.org/projects/to
ols.aspectj

EPL 1.0

Curator http://curator.apache.org Apache 2.0

Disruptor https://github.com/LMAX-Exchange/
disruptor

Apache 2.0

EqualsVerif
ier

https://github.com/jqno/equalsverifie
r

Apache 2.0

guava https://github.com/google/guava Apache 2.0

Guice https://github.com/google/guice Apache 2.0

Hamcrest http://hamcrest.org/ BSD Three Clause

Hibernate
Validator

http://hibernate.org/validator Apache 2.0

HttpCompo
nents

http://hc.apache.org Apache 2.0

infinispan http://infinispan.org/ Apache 2.0

Jackson http://jackson.codehaus.org Apache 2.0

Java https://www.java.com Oracle’s Binary Code License Agreement

Jcabi
Aspects

http://aspects.jcabi.com/index.html BSD Three Clause

Jetty http://eclipse.org/jetty/ Apache 2.0. May also be licensed under Eclipse
1.0

jminix https://code.google.com/p/jminix/ Apache 2.0

JMockit http://jmockit.org MIT

jna https://github.com/twall/jna Apache 2.0 for versions 4.0 and later. Earlier
versions used LGPL 2.1

JsonPath https://github.com/jayway/JsonPath Apache 2.0

JSch http://www.jcraft.com BSD-style

LOGBack http://logback.qos.ch EPL 1.0. Also available under LGPL 2.1

Metrics https://dropwizard.github.io/metrics Apache 2.0

mockito https://github.com/mockito/mockito MIT

netty http://netty.io Apache 2.0

NGINX http://nginx.org BSD Two Clause

Open
vSwitch

http://openvswitch.org Apache 2.0

powermock https://code.google.com/p/powermo
ck

Apache 2.0

protobuf https://developers.google.com/proto
col-buffers

BSD Three Clause

http://tomcat.apache.org
http://zookeeper.apache.org
http://projects.eclipse.org/projects/tools.aspectj
http://projects.eclipse.org/projects/tools.aspectj
http://curator.apache.org
https://github.com/LMAX-Exchange/disruptor
https://github.com/LMAX-Exchange/disruptor
https://github.com/jqno/equalsverifier
https://github.com/jqno/equalsverifier
https://github.com/google/guava
https://github.com/google/guice
http://hamcrest.org/
http://hibernate.org/validator
http://hc.apache.org
http://infinispan.org/
http://jackson.codehaus.org
https://www.java.com
http://aspects.jcabi.com/index.html
http://eclipse.org/jetty/
https://code.google.com/p/jminix/
http://jmockit.org
https://github.com/twall/jna
https://github.com/jayway/JsonPath
http://www.jcraft.com
http://logback.qos.ch
https://dropwizard.github.io/metrics
https://github.com/mockito/mockito
http://netty.io
http://nginx.org
http://openvswitch.org
https://code.google.com/p/powermock
https://code.google.com/p/powermock
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

RxJava http://reactivex.io Apache 2.0

scala http://scala-lang.org BSD Three Clause

scala-loggi
ng

https://github.com/typesafehub/scal
a-logging

Apache 2.0

typesafeco
nf

https://github.com/typesafehub/confi
g

Apache 2.0

ScalaChec
k

http://scalacheck.org BSD Three Clause

ScalaTest http://scalatest.org Apache 2.0

Scallop https://github.com/scallop/scallop MIT

slf4j http://www.slf4j.org MIT

Puppet Modules

Name License

midonet-midonet Apache 2.0

ripienaar-module_data Apache 2.0

puppetlabs-inifile Apache 2.0

deric-zookeeper Apache 2.0

midonet-cassandra Apache 2.0

puppetlabs-apt Apache 2.0

puppetlabs-java Apache 2.0

puppetlabs-tomcat Apache 2.0

Appendix

• MidoNet Web Site

• MidoNet v2015.06 Documentation

• MidoNet v2015.06 Code

• Fuel Enable Experimental Features

• Fuel Plugins Catalog

http://reactivex.io
http://scala-lang.org
https://github.com/typesafehub/scala-logging
https://github.com/typesafehub/scala-logging
https://github.com/typesafehub/config
https://github.com/typesafehub/config
http://scalacheck.org
http://scalatest.org
https://github.com/scallop/scallop
http://www.slf4j.org
http://midonet.org/
http://docs.midonet.org/
https://github.com/midonet/midonet/tree/stable/v2015.06.2
https://docs.mirantis.com/openstack/fuel/fuel-6.1/operations.html#enable-experimental-features
https://www.mirantis.com/products/openstack-drivers-and-plugins/fuel-plugins/

	Guide to the MidoNet Plugin for Fuel 6.1
	Sections

	MidoNet Plugin for Fuel 6.1
	Requirements
	Limitations

	Installation Guide
	Enable Experimental Features
	Install the Plugin
	Create the MidoNet roles
	NSDB role
	Gateway role

	Edit the Fuel deployment graph dependency cycle

	MidoNet Fuel Plugin User Guide
	MidoNet Networks
	Without MidoNet plugin
	With MidoNet plugin

	Select Environment
	Configure MidoNet Plugin
	Assign Roles to Nodes
	Finish environment configuration

	Licenses
	Third Party Components Used in MidoNet OSS
	Puppet Modules

	Appendix

