
The new Report Security functionality is primarily configured through the addition of XML
attributes to elements in the Fieldmapper XML file, fm_IDL.xml. These new attributes fall into
three categories:

● Field value redaction
● Core class row restriction
● Joined class row restriction

These attributes, explained below, are defined within a new XML namespace with the URI
http://open-ils.org/spec/opensrf/IDL/reporter/v1/security, and the common
namespace prefix of repsec. An accompanying XSD is provided to confirm that the locations
and values of the attributes, when supplied, do not fall outside their defined scope and that the
fm_IDL.xml file remains both well-formed and valid.

Field value redaction
Fields used in the SELECT and ORDER BY SQL clauses can be redacted, either outputting
NULL or, optionally, a data type compatible alternate literal value. This is configured through the
addition of several XML attributes to the fields to which redaction should be applied.

XML Attributes involved:
● repsec:redact and repsec:redact_default

○ Type: XML Schema boolean
○ Valid values: true or false

● repsec:redact_with and repsec:redact_with_default
○ Type: string
○ Valid values: any string literal that can be cast to the same datatype as the field

naturally holds
● repsec:redact_skip_function and repsec:redact_skip_function_default

○ Type: string
○ Valid values: a fully-qualified database function that returns a boolean value.

When the function returns TRUE the redaction of the field will not be performed,
otherwise the field will be redacted.

● repsec:redact_skip_function_parameters and
repsec:redact_skip_function_parameters_default

○ Type: string
○ Valid values: a colon-separated list of parameters to pass to the function named

in the repsec:redact_skip_function. Each parameter in the list can have one of
the following three forms

■ The string $runner, which will cause the id of the staff user that
scheduled the run of the report to be passed to the function.

■ The name of a field defined for the class, which will cause the value of
that field from the row being tested for field redaction to be passed to the
function.

■ Any other string that does not contain a colon (:) character, which will be
passed as a dollar-quoted literal to the function. There is no provision for
escaping an embedded colon, so special consideration must be given to
the string literals that need to be passed into the function, and function
may need to perform text manipulation in order to interpret some other
string as a colon before operating on the string as passed.

Field values can be marked for redaction in one of two ways: adding the repsec:redact

attribute with a boolean value of TRUE directly to the <field> element of an IDL class; or by
adding a repsec:redact_default attribute of TRUE to the <fields> container element for all
fields of an IDL class.

Any default set on the <fields> element by applying a repsec:redact_default attribute can
be overridden on individual <field> elements by applying the repsec:redact attribute. If not
supplied at all, the default is to NOT redact a field. When generating SQL, redaction settings
are only tested at the field level, so each field will have its own "calculated redact attribute"
which will be truthy or falsy.

If the "calculated redact attribute" is falsy, all other redaction-related attributes are ignored for
the field.

A repsec:redact_skip_function attribute on the <field> element, or
repsec:redact_skip_function_default on the <fields> element, is not required for
redaction. The contents of the repsec:redact_skip_function_default on the <fields>

element is used as the default for all fields that do not carry their own
repsec:redact_skip_function attribute.

The repsec:redact_skip_function_parameters and
repsec:redact_skip_function_parameters_default values are interpreted as described
above, and are used to pass row level, reporting staff, and global contextual information to the
function used to decide if the redaction request should be skipped or completed for each
marked field.

Finally, all fields are redacted with an SQL NULL value by default. Supplying a
repsec:redact_with attribute on the <field> element, or a repsec:redact_with_default

on the <fields> container element, allows the administrator to supply a non-NULL replacement
value for the database column contents. This value must be a string literal that, when cast, is
type-compatible with the column's natural data type. For instance, an INT column cannot be
redacted with a string that does not consist entirely of numeric characters, and once cast to an
INT must not over- or under-flow the INT data type's boundaries.

Two new, stock functions are supplied for use as redact_skip_function values:
● evergreen.direct_opt_in_check

○ Purpose: confirm that the patron either has a home library at which the staff has
at least one of the permissions from the Required Permission List, or that the
patron has opted in at of those libraries.

○ Parameters
■ Patron ID
■ Staff ID
■ Required Permission List

○ Returns TRUE if the patron is opt-in visible to the staff member, and FALSE
otherwise.

○ Example:
<class id="au" ...>

<fields ...

repsec:redact_default="true"

repsec:redact_skip_function_default="evergreen.direct_opt_in_check"

repsec:redact_skip_function_parameters_default="id:$runner:{VIEW_USER}">

<field name="id" ... repsec:redact="false"/>

...

</fields>

</class>

● evergreen.hint_opt_in_check
○ Purpose: Indirectly confirm that a patron related to a row from another linked

table either has a home library at which the staff has at least one of the
permissions from the Required Permission List, or that the patron has opted in at
of those libraries.

○ Parameters
■ Patron ID
■ Staff ID
■ Required Permission List

○ Applicable classes:
■ aua (table: actor.usr_address)
■ auact (table: actor.usr_activity)
■ aus (table: actor.usr_setting
■ actscecm (table: actor.stat_cat_entry_usr_map)
■ ateo (table: action_trigger.event_output)

○ Returns TRUE if the patron is opt-in visible to the staff member, and FALSE
otherwise.

○ Example:
<class id="ateo" ...>

<fields ...

repsec:redact_skip_function_default="evergreen.hint_opt_in_check"

repsec:redact_skip_function_parameters_default="ateo:id:$runner:{VIEW_USER}">

<field name="data" ... repsec:redact="true"/>

...

</fields>

</class>

In addition to these new functions, the preexisting stock permission test functions, such as
permission.usr_has_perm and permission.usr_has_work_perm can be used as
redact_skip_function values. These can be used in this way:

<class id="circ" ...>

<fields ...

repsec:redact_skip_function_default="permission.usr_has_work_perm"

repsec:redact_skip_function_parameters_default="$runner:VIEW_CIRCULATIONS:circ_lib">

<field name="due_date" ... repsec:redact="true"/>

...

</fields>

</class>

Core class row restriction
Two new attributes are available for defining row-level restrictions on the core class of a report
template:

● repsec:restriction_function
● repsec:restriction_function_parameters

From a configuration perspective, these work in exactly the same way as the
repsec:redact_skip_function and repsec:redact_skip_function_parameters attributes
described above, but are applied to the <class> element instead of <field>. Indeed, the two
stock functions described above, evergreen.direct_opt_in_check and
evergreen.hint_opt_in_check, can be used as restriction functions.

When added, these functions generate a WHERE-clause condition that, when TRUE, allow a
tested row to be included in the report output, all else being equal. This attribute pair is only
applicable to the core class of a report.

For example:
<class id="au" ...

repsec:restriction_function="evergreen.direct_opt_in_check"

repsec:restriction_function_parameters="id:$runner:{VIEW_USER}">

will cause any report that uses the au class as the core source to add a WHERE-clause
condition that restricts the inclusion of rows from actor.usr in the final report output by applying
the evergreen.direct_opt_in_check function.

Joined class row restriction
Two additional new attributes are available to define JOIN-clause restrictions that should be
applied to each row in order to include the tested table row in the final report output:

● repsec:projection_function
● repsec:projection_function_parameters

As with the core class restrictions, the above-described functions can be used for this purpose.

There are two locations for these attributes, and where they are attached defines whether they
will be applied to the relevant underlying table when it is on the left side of a join, or the right
side.

Put another way, an administrator can decide if restrictions are added when a table is joined
from, joined to, or both.

To restrict access to rows of a table being joined to -- that is, when a "child relation" is joined into
a report -- the attributes are applied to the <class> element. For example:

<class id="actscecm" ...

repsec:projection_function="evergreen.direct_opt_in_check"

repsec:projection_function_parameters="target_usr:$runner:{VIEW_USER}">

will cause any report that links from the au class to the actscecm class to restrict the visibility of
rows from actscecm by applying the evergreen.direct_opt_in_check function.

If the projection function attributes are instead applied to the <link> element, the restriction will
be applied only if the link is followed in the report. This allows a report creator to build a
template that does not limit output when it does not link through to tables that should be
restricted, while enforcing the desired visibility limits when a joined table should be restricted
due to relationship with the linking table, even if that joined table is not itself restricted at the
<class> level. This may be the case when a table contains classifying data that is useful and
safe when queried by itself in aggregate, but provides a channel for leaking personal information
when joined to, within a report, from another user-centered table.

For a somewhat contrived example, consider this configuration that allows core and linked use
of ancihu (Non-cataloged In House Use) while redacting the staff field based on the
VIEW_USER permission, but restricts rows based on the opt-in visibility of the staff that recorded
the in-house use based on the VIEW_CIRC permission of the report-running staff member if that
field is linked in the template:

<class id="ancihu" ...>

...

<field

name="staff"

repsec:redact="true"

repsec:redact_skip_function="evergreen.direct_opt_in_check"

repsec:redact_skip_function_parameters="staff:$runner:{VIEW_USER}"/>

...

<link ...

field="staff"

repsec:projection_function="evergreen.direct_opt_in_check"

repsec:projection_function_parameters="staff:$runner:{VIEW_CIRC}"/>

NOTE: Any <class>-level restrictions on the linked table, in this case the actor.usr table, will
also be enforced.

As with Field Value Redaction described above, the existing stock permission functions can be
used in all cases for both Core class and Join class row restriction if there is a relevant Org Unit
column available.

